论文标题

超音:朝着有效的高参数调整

Hyper-Tune: Towards Efficient Hyper-parameter Tuning at Scale

论文作者

Li, Yang, Shen, Yu, Jiang, Huaijun, Zhang, Wentao, Li, Jixiang, Liu, Ji, Zhang, Ce, Cui, Bin

论文摘要

机器学习的不断增长的需求和复杂性构成了高参数调谐系统的压力:虽然模型的评估成本持续增加,但最先进的技术的可扩展性开始成为至关重要的瓶颈。在本文中,我们的灵感来自于我们在生产中的现实应用程序中部署超参数调谐以及现有系统的局限性时的启发,我们提出了Hyper-Tune,这是一个有效且可靠的分布式分布式超参数调谐框架。与现有系统相比,Hyper-Tune突出显示了多个系统优化,包括(1)自动资源分配,(2)异步调度和(3)多效率优化器。我们对基准数据集和生产中的大型现实数据集进行了广泛的评估。从经验上讲,在这些优化的帮助下,在各种场景上,Hyper-Tune优于竞争性超参数调谐系统,包括XGBoost,CNN,RNN和一些神经网络的建筑超参数。与最先进的BOHB和A-BOHB相比,Hyper-Tune分别达到高达11.2倍和5.1倍的速度。

The ever-growing demand and complexity of machine learning are putting pressure on hyper-parameter tuning systems: while the evaluation cost of models continues to increase, the scalability of state-of-the-arts starts to become a crucial bottleneck. In this paper, inspired by our experience when deploying hyper-parameter tuning in a real-world application in production and the limitations of existing systems, we propose Hyper-Tune, an efficient and robust distributed hyper-parameter tuning framework. Compared with existing systems, Hyper-Tune highlights multiple system optimizations, including (1) automatic resource allocation, (2) asynchronous scheduling, and (3) multi-fidelity optimizer. We conduct extensive evaluations on benchmark datasets and a large-scale real-world dataset in production. Empirically, with the aid of these optimizations, Hyper-Tune outperforms competitive hyper-parameter tuning systems on a wide range of scenarios, including XGBoost, CNN, RNN, and some architectural hyper-parameters for neural networks. Compared with the state-of-the-art BOHB and A-BOHB, Hyper-Tune achieves up to 11.2x and 5.1x speedups, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源