论文标题

凸多边形的宽度偏差

Width deviation of convex polygons

论文作者

Akiyama, Shigeki, Kamae, Teturo

论文摘要

我们考虑沿随机方向$ n $ n $ -gon $ t $的宽度$ x_t(ω)$沿随机方向$ t $ in \ mathbb {r}/2π\ mathbb {z} $并研究其偏差率:$$ δ(x_t)= \ frac {\ sqrt {\ mathbb {e}(x^2_t) - \ Mathbb {e}(x_t)^2}}} {\ Mathbb {e}(x_t)}。 $$我们证明,当且仅当$ t $变成$ 2 $ -GON时,最大值才能达到最大值。令$ n \ geq 2 $是一个整数,不是$ 2 $的电源。我们表明,$$ \ sqrt {\fracπ{4n \ tan(\fracπ{2n})} +\ frac {π^2} {8n^2 \ sin^2(\ sin^2(\fracπ{2n})} - 1} - 1} - 1} $是$ $ $ usumum $ unimim $ unimim $ n $ n $ n $ n $ unem uneus $Δ(x _ t) $ t $达到了这一最低限度。它们的特征是由K.特别是,如果$ n $很奇怪,则常规$ n $ -gon是最低形状之一。当$ n $甚至是$ n $时,我们看到普通的$ n $ gon远非最佳。我们还观察到常规三角形截断的偏差率的意外属性。

We consider the width $X_T(ω)$ of a convex $n$-gon $T$ in the plane along the random direction $ω\in\mathbb{R}/2π\mathbb{Z}$ and study its deviation rate: $$ δ(X_T)=\frac{\sqrt{\mathbb{E}(X^2_T)-\mathbb{E}(X_T)^2}}{\mathbb{E}(X_T)}. $$ We prove that the maximum is attained if and only if $T$ degenerates to a $2$-gon. Let $n\geq 2$ be an integer which is not a power of $2$. We show that $$ \sqrt{\fracπ{4n\tan(\fracπ{2n})} +\frac{π^2}{8n^2\sin^2(\fracπ{2n})}-1} $$ is the minimum of $δ(X_T)$ among all $n$-gons and determine completely the shapes of $T$'s which attain this minimum. They are characterized as polygonal approximations of equi-Reuleaux bodies, found and studied by K.~Reinhardt. In particular, if $n$ is odd, then the regular $n$-gon is one of the minimum shapes. When $n$ is even, we see that regular $n$-gon is far from optimal.We also observe an unexpected property of the deviation rate on the truncation of the regular triangle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源