论文标题
与伽马矩阵完全可溶解的1D量子模型
Exactly Solvable 1D Quantum Models with Gamma Matrices
论文作者
论文摘要
在本文中,我们通过使用$ 2^d $ dimensional gamma($γ$)矩阵作为1维量子XY和类似ISING的模型的一维量子式概括为每个站点上的自由度。我们表明,这些模型会导致二次费米子哈密顿人与乔丹·瓦尼(Jordan-Wigner)这样的转换。我们使用4维$γ$矩阵的特定情况说明了这些技术,并探索了模型中存在的量子相变。
In this paper, we write exactly solvable generalizations of 1-dimensional quantum XY and Ising-like models by using $2^d$-dimensional Gamma ($Γ$) matrices as the degrees of freedom on each site. We show that these models result in quadratic Fermionic Hamiltonians with Jordan-Wigner like transformations. We illustrate the techniques using a specific case of 4-dimensional $Γ$ matrices and explore the quantum phase transitions present in the model.