论文标题

Fouriernet:光学相干断层扫描图像中Henle纤维层分割的形状保护网络

FourierNet: Shape-Preserving Network for Henle's Fiber Layer Segmentation in Optical Coherence Tomography Images

论文作者

Cansiz, Selahattin, Kesim, Cem, Bektas, Sevval Nur, Kulali, Zeynep, Hasanreisoglu, Murat, Gunduz-Demir, Cigdem

论文摘要

视网膜中的亨勒的纤维层(HFL)提供了有关眼睛黄斑状况的有价值的信息。但是,在常见的实践中,该层不是单独分段的,而是包含在外核层中,因为很难在标准的光学相干断层扫描(OCT)成像上感知HFL轮廓。由于其在成像光束下的反射率可变,因此描绘了HFL轮廓需要定向OCT,这需要额外的成像。本文通过引入一个保留形状的网络Fouriernet来解决此问题,该网络在使用方向性OCT扫描时获得了标准OCT扫描中的HFL分割。 Fouriernet是一种新的级联网络设计,它提出了在网络培训中获得HFL的形状的想法。该设计建议通过在HFL轮廓上提取傅立叶描述并定义学习这些描述符的附加回归任务来表示形状。然后,它将HFL分割制定为对回归和分类任务的同时学习,其中从输入图像中估算了傅立叶描述符,以对先验进行编码,并与输入图像一起使用以构造HFL分割图。我们对1470张10月扫描图像的实验表明,用傅立叶描述符量化HFL形状并同时学习HFL分割的主要任务会导致更好的结果。这表明设计具有形状的网络以减少执行定向OCT成像的需求来改善HFL分割的有效性。

The Henle's fiber layer (HFL) in the retina carries valuable information on the macular condition of an eye. However, in the common practice, this layer is not separately segmented but rather included in the outer nuclear layer since it is difficult to perceive HFL contours on standard optical coherence tomography (OCT) imaging. Due to its variable reflectivity under an imaging beam, delineating the HFL contours necessitates directional OCT, which requires additional imaging. This paper addresses this issue by introducing a shape-preserving network, FourierNet, that achieves HFL segmentation in standard OCT scans with the target performance obtained when directional OCT scans are used. FourierNet is a new cascaded network design that puts forward the idea of benefiting the shape prior of HFL in the network training. This design proposes to represent the shape prior by extracting Fourier descriptors on the HFL contours and defining an additional regression task of learning these descriptors. It then formulates HFL segmentation as concurrent learning of regression and classification tasks, in which Fourier descriptors are estimated from an input image to encode the shape prior and used together with the input image to construct the HFL segmentation map. Our experiments on 1470 images of 30 OCT scans reveal that quantifying the HFL shape with Fourier descriptors and concurrently learning them with the main task of HFL segmentation lead to better results. This indicates the effectiveness of designing a shape-preserving network to improve HFL segmentation by reducing the need to perform directional OCT imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源