论文标题
基于注意的双向对齐方式的组门控融合多模式情绪识别
Group Gated Fusion on Attention-based Bidirectional Alignment for Multimodal Emotion Recognition
论文作者
论文摘要
情绪识别是一个具有挑战性且积极研究的研究领域,在情绪感知的人类计算机相互作用系统中起着至关重要的作用。在多模式的环境中,不同方式之间的时间对齐尚未得到很好的研究。本文提出了一种名为封闭式双向对准网络(GBAN)的新模型,该模型由LSTM隐藏状态上的基于注意力的双向对齐网络组成,以明确捕获语音与文本之间的对齐关系,以及一个新颖的集体门控融合(GGF)层(GGF)层以整合不同模态的表示。我们从经验上表明,注意一致的表示的表现优于LSTM的最后一个隐藏状态,而拟议的GBAN模型的表现优于Iemocap数据集中现有的最新多模式方法。
Emotion recognition is a challenging and actively-studied research area that plays a critical role in emotion-aware human-computer interaction systems. In a multimodal setting, temporal alignment between different modalities has not been well investigated yet. This paper presents a new model named as Gated Bidirectional Alignment Network (GBAN), which consists of an attention-based bidirectional alignment network over LSTM hidden states to explicitly capture the alignment relationship between speech and text, and a novel group gated fusion (GGF) layer to integrate the representations of different modalities. We empirically show that the attention-aligned representations outperform the last-hidden-states of LSTM significantly, and the proposed GBAN model outperforms existing state-of-the-art multimodal approaches on the IEMOCAP dataset.