论文标题

使用基于机器学习的模型来识别人格

Using Machine Learning Based Models for Personality Recognition

论文作者

Deilami, Fatemeh Mohades, Sadr, Hossein, Nazari, Mojdeh

论文摘要

人格可以定义为行为,情感,动机和思想的结合,旨在根据一些稳定且可衡量的特征来描述人类行为的各个方面。考虑到我们的性格在我们的日常生活中具有显着影响的事实,自动认识一个人的性格属性可以在认知科学的各个方面提供许多基本的实际应用。在本文中提出了基于深度学习的人格识别任务的方法。在各种深层神经网络中,卷积神经网络(CNN)在自然语言处理,尤其是人格检测方面表现出了深远的效率。由于CNN中的各种滤波器大小可能影响其性能,因此我们决定将CNN与经典的集合算法Adaboost结合使用,以考虑使用各种滤波器长度的贡献并在最终分类中使用各种分类器将各种分类器与相应滤波器使用Adaboost组合使用的可能性。通过进行一系列实验,我们提出的方法在论文数据集上得到了验证,经验结果证明了我们所提出的方法的优越性,而与机器学习和深度学习方法相比,我们所提出的方法的优势是人格识别的任务。

Personality can be defined as the combination of behavior, emotion, motivation, and thoughts that aim at describing various aspects of human behavior based on a few stable and measurable characteristics. Considering the fact that our personality has a remarkable influence in our daily life, automatic recognition of a person's personality attributes can provide many essential practical applications in various aspects of cognitive science. deep learning based method for the task of personality recognition from text is proposed in this paper. Among various deep neural networks, Convolutional Neural Networks (CNN) have demonstrated profound efficiency in natural language processing and especially personality detection. Owing to the fact that various filter sizes in CNN may influence its performance, we decided to combine CNN with AdaBoost, a classical ensemble algorithm, to consider the possibility of using the contribution of various filter lengths and gasp their potential in the final classification via combining various classifiers with respective filter size using AdaBoost. Our proposed method was validated on the Essay dataset by conducting a series of experiments and the empirical results demonstrated the superiority of our proposed method compared to both machine learning and deep learning methods for the task of personality recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源