论文标题

半监督学习的对比正则化

Contrastive Regularization for Semi-Supervised Learning

论文作者

Lee, Doyup, Kim, Sungwoong, Kim, Ildoo, Cheon, Yeongjae, Cho, Minsu, Han, Wook-Shin

论文摘要

标签预测上的一致性正则化成为半监督学习的基本技术,但它仍然需要大量的训练迭代以进行高性能。在这项研究中,我们分析了一致性正则化限制了由于在模型更新中排除了具有不受欢迎的伪标签的样品,因此标记信息的传播限制了。然后,我们提出对比度正规化,以提高未标记数据的群集特征一致性正则化的效率和准确性。在特定的情况下,在通过其伪标签将强大的样品分配给集群后,我们的对比度正规化更新了模型,以便具有自信的伪标记的功能在同一群集中汇总了功能,同时推动不同簇中的功能。结果,在培训良好的功能培训期间,可以有效地将自信的伪标签的信息有效地传播到更无标记的样本中。在半监督学习任务的基准上,我们的对比正则化改善了以前的基于一致性的方法,并取得了最新的结果,尤其是在训练次数较少的情况下。我们的方法还显示了开放式半监督学习中的稳健性能,其中未标记的数据包括分布式样本。

Consistency regularization on label predictions becomes a fundamental technique in semi-supervised learning, but it still requires a large number of training iterations for high performance. In this study, we analyze that the consistency regularization restricts the propagation of labeling information due to the exclusion of samples with unconfident pseudo-labels in the model updates. Then, we propose contrastive regularization to improve both efficiency and accuracy of the consistency regularization by well-clustered features of unlabeled data. In specific, after strongly augmented samples are assigned to clusters by their pseudo-labels, our contrastive regularization updates the model so that the features with confident pseudo-labels aggregate the features in the same cluster, while pushing away features in different clusters. As a result, the information of confident pseudo-labels can be effectively propagated into more unlabeled samples during training by the well-clustered features. On benchmarks of semi-supervised learning tasks, our contrastive regularization improves the previous consistency-based methods and achieves state-of-the-art results, especially with fewer training iterations. Our method also shows robust performance on open-set semi-supervised learning where unlabeled data includes out-of-distribution samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源