论文标题

非线性控制分配:基于学习的方法

Nonlinear Control Allocation: A Learning Based Approach

论文作者

Khan, Hafiz Zeeshan Iqbal, Mobeen, Surrayya, Rajput, Jahanzeb, Riaz, Jamshed

论文摘要

现代飞机的设计具有冗余的控制效应器,可满足可容忍度和可操作性要求。这导致飞机被过度驱动,并且需要控制分配方案在控制效应子之间分配控制命令。传统上,使用基于优化的控制分配方案;但是,对于非线性分配问题,这些方法需要大量的计算资源。在这项工作中,提出了基于人工神经网络(ANN)的非线性控制分配方案。所提出的方案由学习通过ANN学习控制有效性映射的倒数,然后将其作为分配者实施,而不是解决在线优化问题。为结合分配器的闭环系统提供了稳定性条件,并通过零件线性效果和基于ANN的分配器来探索计算挑战。为了证明所提出的方案的疗效,它与基于标准的二次编程方法的控制分配方法进行了比较。

Modern aircraft are designed with redundant control effectors to cater for fault tolerance and maneuverability requirements. This leads to aircraft being over-actuated and requires control allocation schemes to distribute the control commands among control effectors. Traditionally, optimization-based control allocation schemes are used; however, for nonlinear allocation problems, these methods require large computational resources. In this work, an artificial neural network (ANN) based nonlinear control allocation scheme is proposed. The proposed scheme is composed of learning the inverse of the control effectiveness map through ANN, and then implementing it as an allocator instead of solving an online optimization problem. Stability conditions are presented for closed-loop systems incorporating the allocator, and computational challenges are explored with piece-wise linear effectiveness functions and ANN-based allocators. To demonstrate the efficacy of the proposed scheme, it is compared with a standard quadratic programming-based method for control allocation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源