论文标题

较高级别跳跃条件的薄表面的光谱目标签名

A Spectral Target Signature for Thin Surfaces with Higher Order Jump Conditions

论文作者

Cakoni, Fioralba, Lee, Heejin, Monk, Peter, Zhang, Yangwen

论文摘要

在本文中,我们考虑了在$ {\ Mathbb r}^m $中确定稀薄各向异性和耗散性不均匀性的结构特性的反问题。在厚度为零的渐近极限中,薄的不均匀性由开放的$ M-1 $尺寸歧管(此处称为屏幕)建模,并且内部的场被涉及二阶阶层表面差异操作员的总场上的跳跃条件所取代。我们表明,由于固定频率以无限的许多入射平面波,所有的表面系数(可能是矩阵和复杂的矩阵)都是由散射场的远场图案确定的。然后,我们引入了一个以新的特征值问题为特征的目标特征,以便可以通过测量的散射数据确定特征值,从而在\ cite {screens}中调整该方法。测得的特征值的变化用于识别系数的变化,而无需使用对健康屏幕进行建模的管理方程式。在我们的调查中,屏幕的形状是已知的,因为它代表了要评估的对象。我们提出了一些初步的数值结果,表明我们的反转方法的有效性。

In this paper we consider the inverse problem of determining structural properties of a thin anisotropic and dissipative inhomogeneity in ${\mathbb R}^m$, $m=2,3$ from scattering data. In the asymptotic limit as the thickness goes to zero, the thin inhomogeneity is modeled by an open $m-1$ dimensional manifold (here referred to as screen), and the field inside is replaced by jump conditions on the total field involving a second order surface differential operator. We show that all the surface coefficients (possibly matrix valued and complex) are uniquely determined from far field patterns of the scattered fields due to infinitely many incident plane waves at a fixed frequency. Then we introduce a target signature characterized by a novel eigenvalue problem such that the eigenvalues can be determined from measured scattering data, adapting the approach in \cite{Screens}. Changes in the measured eigenvalues are used to identified changes in the coefficients without making use of the governing equations that model the healthy screen. In our investigation the shape of the screen is known, since it represents the object being evaluated. We present some preliminary numerical results indicating the validity of our inversion approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源