论文标题
仿射子空间浓度条件
Affine Subspace Concentration Conditions
论文作者
论文摘要
我们为晶格多面体定义了一个新的仿射子空间浓度条件的概念,并证明它们可以用原点带有barycenter的平滑和反射性多面体。我们的证明涉及考虑Fano Toric品种上的the trivial Line Bundle的坡度稳定性,并考虑到琐碎的线束和扩展类$ c_1(\ Mathcal {t} _x)$。
We define a new notion of affine subspace concentration conditions for lattice polytopes, and prove that they hold for smooth and reflexive polytopes with barycenter at the origin. Our proof involves considering the slope stability of the canonical extension of the tangent bundle by the trivial line bundle and with the extension class $c_1(\mathcal{T}_X)$ on Fano toric varieties.