论文标题
在与双曲余弦功能有关的星形功能的亚家族上
On a subfamily of starlike functions related to Hyperbolic Cosine function
论文作者
论文摘要
我们介绍并研究了一个新的Ma-Minda子类,类似Starlike功能的$ \ Mathcal {s}^*_ {\ varrho},$定义为$ \ MATHCAL {s}^{*} _ {\ varrho}:= \ left \ {f \ in \ Mathcal {a}:\ frac {zf'(zf'(z)} {f(z){f(z)} z \ in \ mathbb {d} \ right \},$$与分析函数$ \ cosh \ sqrt {z}相关联,$,我们选择平方根函数的分支,以便$ \ cosh \ cosh \ sqrt {z} = 1+z/2!+z/2! $ \ Mathcal {s}^{*} _ {\ varrho} $,并推断出Sharp $ \ Mathcal {S}^{*} _ {\ Varrho} - $ radii,用于某些分析功能的子类别。
We introduce and study a new Ma-Minda subclass of starlike functions $\mathcal{S}^*_{\varrho},$ defined as $$\mathcal{S}^{*}_{\varrho}:=\left\{f\in\mathcal{A}:\frac{zf'(z)}{f(z)} \prec \cosh \sqrt{z}=:\varrho(z), z\in\mathbb{D} \right\},$$ associated with an analytic univalent function $\cosh \sqrt{z},$ where we choose the branch of the square root function so that $\cosh\sqrt{z}=1+z/2!+z^{2}/{4!}+\cdots.$ We establish certain inclusion relations for $\mathcal{S}^{*}_{\varrho}$ and deduce sharp $\mathcal{S}^{*}_{\varrho}-$radii for certain subclasses of analytic functions.