论文标题

少时:简化输入有助于神经网络理解

When less is more: Simplifying inputs aids neural network understanding

论文作者

Schirrmeister, Robin Tibor, Liu, Rosanne, Hooker, Sara, Ball, Tonio

论文摘要

神经网络图像分类器如何响应更简单,更简单的输入?这些回答对学习过程有何揭示?要回答这些问题,我们需要清楚地衡量输入简单性(或成反比的复杂性),与简化相关的优化目标,以及将这种目标纳入培训和推理的框架。最后,我们需要各种测试床来实验和评估这种简化对学习的影响。在这项工作中,我们用预验证的生成模型给出的编码位大小来衡量简单,并最大程度地减少位大小以简化训练和推理中的输入。我们在几种情况下研究了这种简化的效果:常规培训,数据集凝结和事后解释。在所有设置中,输入与原始分类任务一起简化,我们研究了输入简单性和任务性能之间的权衡。对于注射干扰器的图像,这种简化自然会删除多余的信息。对于数据集凝结,我们发现输入几乎没有准确性降解可以简化。当用于事后解释中时,我们基于学习的简化方法为探索网络决策的基础提供了宝贵的新工具。

How do neural network image classifiers respond to simpler and simpler inputs? And what do such responses reveal about the learning process? To answer these questions, we need a clear measure of input simplicity (or inversely, complexity), an optimization objective that correlates with simplification, and a framework to incorporate such objective into training and inference. Lastly we need a variety of testbeds to experiment and evaluate the impact of such simplification on learning. In this work, we measure simplicity with the encoding bit size given by a pretrained generative model, and minimize the bit size to simplify inputs in training and inference. We investigate the effect of such simplification in several scenarios: conventional training, dataset condensation and post-hoc explanations. In all settings, inputs are simplified along with the original classification task, and we investigate the trade-off between input simplicity and task performance. For images with injected distractors, such simplification naturally removes superfluous information. For dataset condensation, we find that inputs can be simplified with almost no accuracy degradation. When used in post-hoc explanation, our learning-based simplification approach offers a valuable new tool to explore the basis of network decisions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源