论文标题

从高光谱卫星数据中无监督的大气痕量气体的稀疏疏忽

Unsupervised Sparse Unmixing of Atmospheric Trace Gases from Hyperspectral Satellite Data

论文作者

Fiscante, Nicomino, Addabbo, Pia, Biondi, Filippo, Giunta, Gaetano, Orlando, Danilo

论文摘要

在这封信中,提出了一种从高光谱卫星观测值中检索垂直柱浓度的新方法。主要思想是通过估计紫外线区域成像光谱仪收集的每个混合像素中的痕量气体光谱特征的丰度来执行线性光谱脉冲。为此,测量的稀疏性质被亮相,并应用压缩感测范式来估计先验广泛的光谱库给出的气体供应的浓度,包括同时在不同温度和压力下测量的参考横切。已使用模拟和实际高光谱数据集对所提出的方法进行了实验评估。具体而言,实验分析依赖于使用对流层监测仪器收集的数据在火山排放过程中检索二氧化硫。为了验证该过程,我们还根据基于差异光吸收光谱技术和使用盲源分离估计的浓度进行了比较所获得的结果与二氧化硫的总柱产物。

In this letter, a new approach for the retrieval of the vertical column concentrations of trace gases from hyperspectral satellite observations, is proposed. The main idea is to perform a linear spectral unmixing by estimating the abundances of trace gases spectral signatures in each mixed pixel collected by an imaging spectrometer in the ultraviolet region. To this aim, the sparse nature of the measurements is brought to light and the compressive sensing paradigm is applied to estimate the concentrations of the gases' endemembers given by an a priori wide spectral library, including reference cross sections measured at different temperatures and pressures at the same time. The proposed approach has been experimentally assessed using both simulated and real hyperspectral dataset. Specifically, the experimental analysis relies on the retrieval of sulfur dioxide during volcanic emissions using data collected by the TROPOspheric Monitoring Instrument. To validate the procedure, we also compare the obtained results with the sulfur dioxide total column product based on the differential optical absorption spectroscopy technique and the retrieved concentrations estimated using the blind source separation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源