论文标题
使用谐波广义极化张量和对称组的最小对象特征
Minimal Object Characterisations using Harmonic Generalised Polarizability Tensors and Symmetry Groups
论文作者
论文摘要
我们引入了一种新型的物体表征,该对象表征能够准确地描述潜在的现场反问题(例如静电,磁静态和相关的低频麦克斯韦问题)的小隔离包含物。相关的应用包括表征磁化磁场测量中的磁场测量值的非纤维未探索的法令(UXO),描述了使用电阻抗层析成像(EIT)进行医学成像的少量传导含量(EIT),使用电阻率(ERT)进行地质地面进行验证,并通过将食品固定为良好的食物,并构成了良好的食物,并构成了良好的食物,并构成了良好的食物,并及时地构成了良好的食物。我们的对象表征建立在广义的极化张量(GPT)对象表征概念上,并为紧凑型GPT(CGPT)提供了替代方案。我们将新特征谐波GPT(HGPTS)称为它们的系数对应于谐波多项式的产品。然后,我们表明,通过考虑对象的对称组并提出了一种系统的方法来确定该组及其维度固定的对称谐波多项式的子空间,可以通过考虑对象的对称组来大大减少表征对象所需的独立系数。这使我们能够确定不同对称组的独立HGPT系数。
We introduce a new type of object characterisation, which is capable of accurately describing small isolated inclusions for potential field inverse problems such as in electrostatics, magnetostatics and related low frequency Maxwell problems. Relevant applications include characterising ferrous unexploded ordnance (UXO) from magnetostatic field measurements in magnetometry, describing small conducting inclusions for medical imaging using electrical impedance tomography (EIT), performing geological ground surveys using electrical resistivity imaging (ERT), characterising objects by electrosensing fish to navigate and identify food as well as describing the effective properties of dilute composites. Our object characterisation builds on the generalised polarizability tensor (GPT) object characterisation concept and provides an alternative to the compacted GPT (CGPT). We call the new characterisations harmonic GPTs (HGPTs) as their coefficients correspond to products of harmonic polynomials. Then, we show that the number of independent coefficients of HGPTs needed to characterise objects can be significantly reduced by considering the symmetry group of the object and propose a systematic approach for determining the subspace of symmetric harmonic polynomials that is fixed by the group and its dimension. This enable us to determine the independent HGPT coefficients for different symmetry groups.