论文标题

K-参数动态通用线性模型的有效顺序方法

An Efficient Sequential Approach for k-Parametric Dynamic Generalised Linear Models

论文作者

Alves, Mariane Branco, Migon, Helio S., Santos Jr, Silvaneo V., Marotta, Raíra

论文摘要

提出了一种用于贝叶斯动态通用线性模型的新型顺序推断方法,以解决单变量和多元$ K $ - 参数指数族。它通过利用指数家族的共轭和预测结构来有效地处理各种反应,包括多项式,伽玛,正常和泊松分布结果。该方法集成了信息几何概念,例如投影定理和kullback-leibler差异,并与变化推断的最新进展保持一致。合成数据集的应用程序强调了其计算效率和可扩展性,超过了替代方法。该方法支持新信息的战略整合,促进监视,干预以及折现因子的应用,这是顺序分析中通常是典型的。 R软件包KDGLM可供应用的研究人员直接使用,从而促进了针对特定K-参数动态通用模型的实现。

A novel sequential inferential method for Bayesian dynamic generalised linear models is presented, addressing both univariate and multivariate $k$-parametric exponential families. It efficiently handles diverse responses, including multinomial, gamma, normal, and Poisson distributed outcomes, by leveraging the conjugate and predictive structure of the exponential family. The approach integrates information geometry concepts, such as the projection theorem and Kullback-Leibler divergence, and aligns with recent advances in variational inference. Applications to both synthetic and real datasets highlight its computational efficiency and scalability, surpassing alternative methods. The approach supports the strategic integration of new information, facilitating monitoring, intervention, and the application of discount factors, which are typical in sequential analyses. The R package kDGLM is available for direct use by applied researchers, facilitating the implementation of the method for specific k-parametric dynamic generalised models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源