论文标题
从经典到非相关性极限制度的Klein-Gordon-Schrödinger系统的均匀精确集成符
Uniformly accurate integrators for Klein-Gordon-Schrödinger systems from the classical to non-relativistic limit regime
论文作者
论文摘要
在本文中,我们提出了一类新型的渐近型一致的指数型积分器,用于Klein-Gordon-Schrödinger系统,该系统捕获了从缓慢变化的经典制度到高度振荡的非振荡性极限限制制度的所有制度。我们实现了$ c $中均匀的订单和第二订单的收敛,而无需任何时间步长限制。特别是,我们在误差常数中潜在的大参数$ c $的负功率中建立了显式关系。
In this paper we present a novel class of asymptotic consistent exponential-type integrators for Klein-Gordon-Schrödinger systems that capture all regimes from the slowly varying classical regime up to the highly oscillatory non-relativistic limit regime. We achieve convergence of order one and two that is uniform in $c$ without any time step size restrictions. In particular, we establish an explicit relation between gain in negative powers of the potentially large parameter $c$ in the error constant and loss in derivative.