论文标题

内核扩展的随机神经网络

A Kernel-Expanded Stochastic Neural Network

论文作者

Sun, Yan, Liang, Faming

论文摘要

深度神经网络在机器学习中遇到了许多基本问题。例如,它通常被困在训练中的当地最低限度,并且很难评估其预测不确定性。为了解决这些问题,我们提出了所谓的内核扩展的随机神经网络(K-Stonet)模型,该模型将支持向量回归(SVR)作为第一个隐藏层,并将神经网络重新定义为潜在变量模型。前者通过径向基函数(RBF)内核将输入矢量映射到无限的尺寸特征空间中,从而确保其训练损失表面没有局部最小值。后者将高维的非凸神经网络训练问题打破了一系列低维凸优化问题,并可以轻松评估其预测不确定性。可以使用插定的登记优化(IRO)算法轻松训练K-Stonet。与传统的深层神经网络相比,K-Stonet具有渐近融合到全球最佳量的理论保证,并可以轻松评估预测不确定性。新模型在训练,预测和不确定性量化中的性能通过模拟和真实的数据示例说明。

The deep neural network suffers from many fundamental issues in machine learning. For example, it often gets trapped into a local minimum in training, and its prediction uncertainty is hard to be assessed. To address these issues, we propose the so-called kernel-expanded stochastic neural network (K-StoNet) model, which incorporates support vector regression (SVR) as the first hidden layer and reformulates the neural network as a latent variable model. The former maps the input vector into an infinite dimensional feature space via a radial basis function (RBF) kernel, ensuring absence of local minima on its training loss surface. The latter breaks the high-dimensional nonconvex neural network training problem into a series of low-dimensional convex optimization problems, and enables its prediction uncertainty easily assessed. The K-StoNet can be easily trained using the imputation-regularized optimization (IRO) algorithm. Compared to traditional deep neural networks, K-StoNet possesses a theoretical guarantee to asymptotically converge to the global optimum and enables the prediction uncertainty easily assessed. The performances of the new model in training, prediction and uncertainty quantification are illustrated by simulated and real data examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源