论文标题

通过无线电访问网络实现AI支持的AI支持端到端的经验

Achieving AI-enabled Robust End-to-End Quality of Experience over Radio Access Networks

论文作者

Roy, Dibbendu, Rao, Aravinda S., Alpcan, Tansu, Das, Goutam, Palaniswami, Marimuthu

论文摘要

新兴的应用程序,例如增强现实,汽车互联网和远程手术都需要和谐起作用的计算和网络功能。这些应用程序的端到端(E2E)经验​​质量(QOE)取决于网络和计算资源的同步分配。但是,资源与E2E QoE结果之间的关系通常是随机的,也是非线性的。为了做出有效的资源分配决策,对这些关系进行建模至关重要。本文提出了一种基于机器学习的新方法,以学习这些关系,并为此目的同时协调这两个资源。机器学习模型进一步有助于对随机变化做出强大的分配决策,并将强大的优化简化为常规约束优化。当资源不足以满足所有应用程序要求时,我们的框架支持E2E QoE的一些申请,以最小的降解(优美的退化)。我们还展示了如何通过软件定义网络(SDN)和Kubernetes Technologies以分布式方式实施学习和优化方法。我们的结果表明,基于深度学习的建模以大约99.8 \%的精度实现E2E QoE,而与现有的差异服务替代方案相比,我们强大的联合优化技术有效地分配了资源。

Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8\% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源