论文标题
相对论带电颗粒梁的全光超快自旋旋转
All-optical ultrafast spin rotation for relativistic charged particle beams
论文作者
论文摘要
提前提出了一种超快自旋旋转的全光学方法,以精确操纵相对论带电的胶子或离子的极化。特别是,激光驱动的致密超短光束是通过与共同传播的中等时间不对称(频率射或亚周期THZ)激光脉冲来操纵的。使用半古典的数值模拟,我们发现在时间不对称的激光场中,可以从其自旋进液和动量振荡之间灵活控制的相位延迟确定粒子的自旋旋转。质子束的初始极化可以旋转到任何所需的方向(例如,从常见的横向到更有用的纵向极化),使用可行的频频chir的激光脉冲,在数十个飞秒中具有非凡的精度(大于1 \%)。此外,从能量和角度差异方面,梁质量在旋转过程中可以显着提高。该方法在涉及超快自旋操作的各个区域具有潜在的应用,例如激光 - 血浆,激光核和高能粒子物理。
An all-optical method of ultrafast spin rotation is put forward to precisely manipulate the polarization of relativistic charged particle beams of leptons or ions. In particular, laser-driven dense ultrashort beams are manipulated via single-shot interaction with a co-propagating moderate temporally asymmetric (frequency-chirped or subcycle THz) laser pulse. Using semi-classical numerical simulations, we find that in a temporally asymmetrical laser field, the spin rotation of a particle can be determined from the flexibly controllable phase retardation between its spin precession and momentum oscillation. An initial polarization of a proton beam can be rotated to any desired orientation (e.g., from the common transverse to the more useful longitudinal polarization) with extraordinary precision (better than 1\%) in tens of femtoseconds using a feasible frequency-chirped laser pulse. Moreover, the beam qualities, in terms of energy and angular divergence, can be significantly improved in the rotation process. This method has potential applications in various areas involving ultrafast spin manipulation, like laser-plasma, laser-nuclear and high-energy particle physics.