论文标题

$(2+1)$(2+1)$ D量子关键点的纠缠熵与猝灭障碍:尺寸减小方法

Entanglement Entropy of $(2+1)$D Quantum Critical Points with Quenched Disorder: Dimensional Reduction Approach

论文作者

Tang, Qicheng, Zhu, W.

论文摘要

理解给定多体系统的量子批判性的强大观点是通过其纠缠内容。到目前为止,大多数进展仅限于无障碍病例。在这里,我们开发了一个有效的方案,以从概念上新的角度来计算$(2+1)$(2+1)$ - 尺寸量子临界点的纠缠熵,其中可以将猝灭障碍视为尺寸还原性的相互作用。作为一个具体的例子,我们揭示了$(2+1)$ - 尺寸dirac fermion的新型纠缠特征,暴露于随机磁场,该磁场容纳一类新兴无序无序的量子临界点。我们证明,纠缠熵满足区域法则的缩放,并观察到指向新兴无序量子关键性的区域律系数的修改。此外,由于有限的相关长度,我们还获得了对纠缠熵的子领先校正。发现这种子领先的校正是相关长度和无序强度的普遍功能。我们讨论了它与基础理论的重新归一化组流的联系。

A formidable perspective in understanding quantum criticality of a given many-body system is through its entanglement contents. Until now, most progress are only limited to the disorder-free case. Here, we develop an efficient scheme to compute the entanglement entropy of $(2+1)$-dimensional quantum critical points with randomness, from a conceptually novel angle where the quenched disorder can be considered as dimensionally reducible interactions. As a concrete example, we reveal novel entanglement signatures of $(2+1)$-dimensional Dirac fermion exposed to a random magnetic field, which hosts a class of emergent disordered quantum critical points. We demonstrate that the entanglement entropy satisfies the area-law scaling, and observe a modification of the area-law coefficient that points to the emergent disordered quantum criticality. Moreover, we also obtain the sub-leading correction to the entanglement entropy due to a finite correlation length. This sub-leading correction is found to be a universal function of the correlation length and disorder strength. We discuss its connection to the renormalization group flows of underlying theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源