论文标题
部分可观测时空混沌系统的无模型预测
Bayesian inference on a microstructural, hyperelastic model of tendon deformation
论文作者
论文摘要
软组织变形的微观结构模型在包括人造组织设计和手术计划在内的应用中很重要。这些模型的基础及其优于现象学对应物的优势在于,它们结合了与组织的显微镜结构和本构行为直接相关的参数,因此可以用于预测结构变化对组织的影响。尽管研究试图使用多种,最先进的实验技术来确定此类参数,但已经报道了多个数量级的值,导致了真实参数值的不确定性,并创造了可以处理这种不确定性的模型的需求。我们得出了一种微观结构的高弹性模型,用于横向各向同性软组织,并使用它来对肌腱的机械行为进行建模。为了考虑参数不确定性,我们采用贝叶斯方法并应用自适应马尔可夫链蒙特卡洛算法来确定模型参数的后验概率分布。获得的后验分布与先前报告的参数测量值一致,并使我们能够量化建模的每个肌腱样本的不确定性。这种方法可以用作量化其他软组织中参数不确定性的原型。
Microstructural models of soft tissue deformation are important in applications including artificial tissue design and surgical planning. The basis of these models, and their advantage over their phenomenological counterparts, is that they incorporate parameters that are directly linked to the tissue's microscale structure and constitutive behaviour and can therefore be used to predict the effects of structural changes to the tissue. Although studies have attempted to determine such parameters using diverse, state-of-the-art, experimental techniques, values ranging over several orders of magnitude have been reported, leading to uncertainty in the true parameter values and creating a need for models that can handle such uncertainty. We derive a microstructural, hyperelastic model for transversely isotropic soft tissues and use it to model the mechanical behaviour of tendons. To account for parameter uncertainty, we employ a Bayesian approach and apply an adaptive Markov chain Monte Carlo algorithm to determine posterior probability distributions for the model parameters. The obtained posterior distributions are consistent with parameter measurements previously reported and enable us to quantify the uncertainty in their values for each tendon sample that was modelled. This approach could serve as a prototype for quantifying parameter uncertainty in other soft tissues.