论文标题

可数可允许的集合的部分优先末端扩展

Partially-elementary end extensions of countable admissible sets

论文作者

McKenzie, Zachiri

论文摘要

Kaufmann的结果表明,如果$L_α$是可计数,可接受的,并且满足$π_n\ textsf {-collection} $,则$ \ langlel_α,\ in \ rangle $具有适当的$σ_{n+1} $ - 基本结束。本文研究了$ \ langlel_α,\ in \ rangle $中所持的理论的程度,可以将其转移到Kaufmann结果保证的部分元素末端扩展中。我们表明,有$l_α$满足完整的分离,powerset和$π_n\ textsf {-collection} $没有适当的$σ_{n+1} $ - 基本末端扩展,满足满足$π_{n} n} \ textsf {-collection} $或$ fextsf}相比之下,我们表明,如果$ a $是可计的可允许的集合,满足$π_n\ textsf {-collection} $ and $ t $是一种递归枚举的理论,它在$ \ langle a,in \ rangle $,然后是$ \ langle a in \ langle a in \ rangle $ $ $ $ $ -

A result of Kaufmann shows that if $L_α$ is countable, admissible and satisfies $Π_n\textsf{-Collection}$, then $\langle L_α, \in \rangle$ has a proper $Σ_{n+1}$-elementary end extension. This paper investigates to what extent the theory that holds in $\langle L_α, \in \rangle$ can be transferred to the partially-elementary end extensions guaranteed by Kaufmann's result. We show that there are $L_α$ satisfying full separation, powerset and $Π_n\textsf{-Collection}$ that have no proper $Σ_{n+1}$-elementary end extension satisfying either $Π_{n}\textsf{-Collection}$ or $Π_{n+3}\textsf{-Foundation}$. In contrast, we show that if $A$ is a countable admissible set that satisfies $Π_n\textsf{-Collection}$ and $T$ is a recursively enumerable theory that holds in $\langle A, \in \rangle$, then $\langle A, \in \rangle$ has a proper $Σ_n$-elementary end extension that satisfies $T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源