论文标题

有条件的变异自动编码器具有生成对抗网络的平衡预训练

Conditional Variational Autoencoder with Balanced Pre-training for Generative Adversarial Networks

论文作者

Yao, Yuchong, Wangr, Xiaohui, Ma, Yuanbang, Fang, Han, Wei, Jiaying, Chen, Liyuan, Anaissi, Ali, Braytee, Ali

论文摘要

类不平衡发生在许多现实世界中,包括图像分类,其中每个类中的图像数量都大不相同。随着数据不平衡的数据,生成的对抗网络(GAN)倾向于多数类样本。提出了最近的两种方法,即平衡甘甘(Bagan)和改进的啤酒(Bagan-GP),作为解决此问题并将数据恢复到数据的增强工具。前者以无监督的方式预先培训自动编码器的权重。但是,当来自不同类别的图像具有相似功能时,它是不稳定的。通过促进有监督的自动编码器培训,根据Bagan改进了后者,但预培训对多数级别有偏见。在这项工作中,我们提出了一种新型的有条件变异自动编码器,具有平衡的生成对抗网络(CAPGAN)作为生成逼真的合成图像的增强工具。特别是,我们利用有条件的卷积变异自动编码器,并具有监督和平衡的预训练,以进行GAN初始化和梯度惩罚。我们提出的方法在高度不平衡的MNIST,Fashion-Mnist,CIFAR-10和两个医学成像数据集上介绍了其他最先进方法的卓越性能。我们的方法可以根据Fréchet的距离,结构相似性指数量度和感知质量综合高质量的少数族裔样本。

Class imbalance occurs in many real-world applications, including image classification, where the number of images in each class differs significantly. With imbalanced data, the generative adversarial networks (GANs) leans to majority class samples. The two recent methods, Balancing GAN (BAGAN) and improved BAGAN (BAGAN-GP), are proposed as an augmentation tool to handle this problem and restore the balance to the data. The former pre-trains the autoencoder weights in an unsupervised manner. However, it is unstable when the images from different categories have similar features. The latter is improved based on BAGAN by facilitating supervised autoencoder training, but the pre-training is biased towards the majority classes. In this work, we propose a novel Conditional Variational Autoencoder with Balanced Pre-training for Generative Adversarial Networks (CAPGAN) as an augmentation tool to generate realistic synthetic images. In particular, we utilize a conditional convolutional variational autoencoder with supervised and balanced pre-training for the GAN initialization and training with gradient penalty. Our proposed method presents a superior performance of other state-of-the-art methods on the highly imbalanced version of MNIST, Fashion-MNIST, CIFAR-10, and two medical imaging datasets. Our method can synthesize high-quality minority samples in terms of Fréchet inception distance, structural similarity index measure and perceptual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源