论文标题

多视图非负矩阵分解通过交叉熵损失进行判别学习

Multi-View Non-negative Matrix Factorization Discriminant Learning via Cross Entropy Loss

论文作者

Liu, Jian-wei, Wang, Yuan-fang, Lu, Run-kun, Luo, Xionglin

论文摘要

多视图学习通过杠杆化同一对象的不同视图之间的关系来实现分类的任务目标。大多数现有方法通常集中于多种视图之间的一致性和互补性。但是,并非所有这些信息对于分类任务有用。取而代之的是,是特定的歧视信息起着重要作用。张张等人。通过联合非负矩阵分解,探索在不同观点中存在的歧视性和非歧视性信息。在本文中,我们通过使用横熵损失函数来更好地限制目标函数,从而改善了该BA-SIS的该算法。最后,我们在相同的数据集上实现了比原始的更好的分类效果,并显示出比许多最新算法的优越性。

Multi-view learning accomplishes the task objectives of classification by leverag-ing the relationships between different views of the same object. Most existing methods usually focus on consistency and complementarity between multiple views. But not all of this information is useful for classification tasks. Instead, it is the specific discriminating information that plays an important role. Zhong Zhang et al. explore the discriminative and non-discriminative information exist-ing in common and view-specific parts among different views via joint non-negative matrix factorization. In this paper, we improve this algorithm on this ba-sis by using the cross entropy loss function to constrain the objective function better. At last, we implement better classification effect than original on the same data sets and show its superiority over many state-of-the-art algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源