论文标题
在随机的常规图上,在安德森模型中进行了无限的时间缩放
Sub-diffusive Thouless time scaling in the Anderson model on random regular graphs
论文作者
论文摘要
具有系统大小的无效时间的缩放对于表征量子系统中的动力学特性至关重要。在这项工作中,我们研究了安德森模型中无人机的缩放,并在带有现场障碍的随机常规图上研究。我们从两个主要数量的时间确定了时间:光谱外形和功率谱。这两个量都探测了系统中的远程光谱相关性,并允许我们确定无用的时间作为时间尺度,然后由随机矩阵理论很好地描述了系统。我们发现,无用时间的缩放与预期本地化阶段的亚延误政权的存在是一致的。此外,为了减少有限尺寸的效果,我们通过引入模型的Floquet版本来打破节能,并表明它具有类似的亚脱水状态。
The scaling of the Thouless time with system size is of fundamental importance to characterize dynamical properties in quantum systems. In this work, we study the scaling of the Thouless time in the Anderson model on random regular graphs with on-site disorder. We determine the Thouless time from two main quantities: the spectral form factor and the power spectrum. Both quantities probe the long-range spectral correlations in the system and allow us to determine the Thouless time as the time scale after which the system is well described by random matrix theory. We find that the scaling of the Thouless time is consistent with the existence of a sub-diffusive regime anticipating the localized phase. Furthermore, to reduce finite-size effects, we break energy conservation by introducing a Floquet version of the model and show that it hosts a similar sub-diffusive regime.