论文标题

复发序列的深符号回归

Deep Symbolic Regression for Recurrent Sequences

论文作者

d'Ascoli, Stéphane, Kamienny, Pierre-Alexandre, Lample, Guillaume, Charton, François

论文摘要

符号回归,即从对其值的观察中预测功能,是众所周知的一项挑战。在本文中,我们训练变形金刚推断整数或浮子的功能或复发关系序列,这是人类智商测试中的典型任务,在机器学习文献中几乎没有解决。我们在OEIS序列的子集上评估了整数模型,并表明它的表现优于内置的Mathematica函数,用于复发预测。我们还证明,我们的浮点模型能够产生量像库外功能和常数的信息近似值,例如$ \ operatatorName {bessel0}(x)\大约\ frac {\ sin(x)+\ cos(x)} {\ sqrt {πx}} $和$ 1.644934 \ lib ofist^2/6 $。在https://symbolicrecress.metademolab.com上提供了我们模型的互动演示。

Symbolic regression, i.e. predicting a function from the observation of its values, is well-known to be a challenging task. In this paper, we train Transformers to infer the function or recurrence relation underlying sequences of integers or floats, a typical task in human IQ tests which has hardly been tackled in the machine learning literature. We evaluate our integer model on a subset of OEIS sequences, and show that it outperforms built-in Mathematica functions for recurrence prediction. We also demonstrate that our float model is able to yield informative approximations of out-of-vocabulary functions and constants, e.g. $\operatorname{bessel0}(x)\approx \frac{\sin(x)+\cos(x)}{\sqrt{πx}}$ and $1.644934\approx π^2/6$. An interactive demonstration of our models is provided at https://symbolicregression.metademolab.com.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源