论文标题
Econet:用于涂鸦的交互式细分的有效卷积在线可能性网络
ECONet: Efficient Convolutional Online Likelihood Network for Scribble-based Interactive Segmentation
论文作者
论文摘要
在CT图像中与CoVID-19相关的肺部病变的自动分割需要大量注释的体积。注释授权专家知识,并且可以通过完全手动分割方法获得时间密集型。此外,肺部病变具有较大的患病率变异,一些病理具有与健康肺组织相似的视觉外观。在将现有的半自动交互分割技术应用于数据标记时,这构成了挑战。为了应对这些挑战,我们提出了一个有效的卷积神经网络(CNN),在注释者提供基于涂鸦的互动时可以在线学习。为了加速通过用户互动标记的样品从使用的样本中进行学习,使用基于补丁的方法来培训网络。此外,我们使用加权的横向渗透损失来解决用户互动可能导致的类失衡。在在线推断期间,使用完全卷积的方法将学习的网络应用于整个输入量。我们将我们提出的方法与使用合成涂鸦的最先进方法进行比较,并表明它在注释与Covid-19相关的肺部病变的任务上的现有方法优于现有方法,在COVID-19的任务中,骰子得分提高了16%,同时将执行时间降低了3 $ \ timper $,并且需要减少9000个基于辛克尔布斯的标签标签Voxels。由于在线学习方面,我们的方法迅速适应用户输入,从而产生了高质量的细分标签。 Econet的源代码可在以下网址获得:https://github.com/masadcv/econet-monailabel。
Automatic segmentation of lung lesions associated with COVID-19 in CT images requires large amount of annotated volumes. Annotations mandate expert knowledge and are time-intensive to obtain through fully manual segmentation methods. Additionally, lung lesions have large inter-patient variations, with some pathologies having similar visual appearance as healthy lung tissues. This poses a challenge when applying existing semi-automatic interactive segmentation techniques for data labelling. To address these challenges, we propose an efficient convolutional neural networks (CNNs) that can be learned online while the annotator provides scribble-based interaction. To accelerate learning from only the samples labelled through user-interactions, a patch-based approach is used for training the network. Moreover, we use weighted cross-entropy loss to address the class imbalance that may result from user-interactions. During online inference, the learned network is applied to the whole input volume using a fully convolutional approach. We compare our proposed method with state-of-the-art using synthetic scribbles and show that it outperforms existing methods on the task of annotating lung lesions associated with COVID-19, achieving 16% higher Dice score while reducing execution time by 3$\times$ and requiring 9000 lesser scribbles-based labelled voxels. Due to the online learning aspect, our approach adapts quickly to user input, resulting in high quality segmentation labels. Source code for ECONet is available at: https://github.com/masadcv/ECONet-MONAILabel.