论文标题
WASP-189 B的气氛和建筑由Cheops相曲线探测
The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve
论文作者
论文摘要
绕着热和庞大的早期型恒星绕的气体巨头可以达到与最冷恒星相当的日期温度。这些“超热木星”具有由分子解离的离子和原子种制成的气氛,并具有强大的日夜温度梯度。在不同轨道相处的光度观测提供了对行星大气特性的见解。我们分析了使用仪器Choops获得的WASP-189的光度观测值,以从系统结构和行星氛围中受到限制。我们实施了一个适用于由快速旋转宿主星的重力变形光球引起的不对称过境形状的光曲线模型。我们还对行星通量的反射性和热成分进行了建模,恒星底漆和轻轨时间对过境时机,恒星活动和Cheops Systematics的影响。从不对称的过境中,我们测量超热木星黄蜂189 b的大小,$ r_p = 1.600^{+0.017} _ { - 0.016} \,r_j $,精度为1%,并且是行星系统的真实骨倾斜度,$ coldy $ψ_p= 89.6.6.6.6.6.6.6.6.6.6.6.6.6.2.6.6.6.6.2.6.6.6.6.6.6.6.6.6.6.2 c \ pm 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2°1.2°1.2°1.2°1.2°(1%)。我们发现没有显着的热点偏移从相位曲线偏移,并获得Eclipse深度$δ_\ text {ecl} = 96.5^{+4.5} _ { - 5.0} \,\ \ text {ppm} $,我们从中得出了seemetric offerric offerric offerric offerric offerric offerric offerric offerric offerric offerric offerric abedo:$ a_g <0.48 $。我们还发现,在能量重新分布极低的情况下,仅通过热发射才能解释日食深度。最后,我们将光度变异性归因于恒星旋转,要么是通过表面不均匀性或对流芯和辐射包膜之间的共振耦合。
Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These "ultra-hot Jupiters" have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet atmospheric properties. We analyse the photometric observations of WASP-189 acquired with the instrument CHEOPS to derive constraints on the system architecture and the planetary atmosphere. We implement a light curve model suited for asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also model the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity and CHEOPS systematics. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, $R_p=1.600^{+0.017}_{-0.016}\,R_J$, with a precision of 1%, and the true orbital obliquity of the planetary system $Ψ_p=89.6\pm1.2°$ (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth $δ_\text{ecl}=96.5^{+4.5}_{-5.0}\,\text{ppm}$, from which we derive an upper limit on the geometric albedo: $A_g<0.48$. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope.