论文标题

Riemann-Hurwitz定理和第二个主要定理,用于图或Metrized复合物上的谐波形态

Riemann-Hurwitz theorem and second main theorem for harmonic morphisms on graphs or metrized complexes

论文作者

Cao, Tingbin, Cheng, Mengnan

论文摘要

在本文中,我们主要获得了riemann-hurwitz定理的谐波形态学定理(Vertex加权)度量图或代数曲线的Metrrized复合物,这些曲线的启发启发了许多由于许多研究人员而造成的图形或标准化复合物的谐波形态的工作。通过利用这些Riemann-Hurwitz定理,我们从尼凡尼林纳理论的角度来看,系统地建立了在有限图,(顶点加权)度量图或代braic曲线的谐波计量图的第二个主要定理,用于有限图,顶点加权图,(VERTEX加权)度量图或累积式化合物。

In this article, we mainly obtain the Riemann-Hurwitz theorems for harmonic morphisms on (vertex-weighted) metric graphs or metrized complexes of algebraic curves, inspired of the recent work on harmonic morphisms of graphs or metrized complexes due to many researchers. By making use of these Riemann-Hurwitz theorems, we then systematically establish the second main theorems for harmonic morphisms on finite graphs, vertex-weighted graphs, (vertex-weighted) metric graphs or metrized complexes of algebraic curves, from the viewpoint of Nevanlinna theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源