论文标题
硅酸盐蒸气在确定亚螺旋的结构,半径和包膜质量分数中的重要性
The importance of silicate vapor in determining the structure, radii, and envelope mass fractions of sub-Neptunes
论文作者
论文摘要
预计在温度条件下,实质性硅酸盐蒸气将在化学平衡状态下,在硅酸盐 - 大气界面的典型情况下,可超过5000 k。这些型号的大气结构的先前模型和这些系外行星的演变,这些模型已用于限制其大气质量分数,已忽略了这种组成的构成。在这项工作中,我们表明,以氢为主的气氛中的硅酸盐蒸气充当可凝度的物种,从而随着高度而降低了丰度。所得的平均分子量梯度在高于$ \ sim 4000 $ k的温度下抑制对流,从而诱导近表面辐射层。与具有相同基础温度和对流的纯H/HE气氛相比,该辐射层降低了行星的总半径。因此,我们预计硅酸盐蒸气会对推断的包膜质量分数和亚新持久行星的热演化产生重大影响。我们证明,对于具有较大质量,平衡温度和大气质量分数的行星,半径和推断大气质量的差异最大。对于年轻行星来说,影响最大,但对于某些子纳普人来说,差异可能会持续存在。对于带有$ t_ \ mathrm {eq} = 1000 $ k的$ 10 m_ \ oplus $行星,$ \ sim 300 $ myr的年龄,一个半径与大气质量分数一致的半径是占硅酸盐蒸气时的大气质量分数,因为silicate Vapor会被误解,以指示2%的大气质量质量,如果是2%的大气质量。预计大气中硅酸盐蒸气的存在对原始氢气的积聚和丧失具有重要意义。
Substantial silicate vapor is expected to be in chemical equilibrium at temperature conditions typical of the silicate-atmosphere interface of sub-Neptune planets, which can exceed 5000 K. Previous models of the atmospheric structure and evolution of these exoplanets, which have been used to constrain their atmospheric mass fractions, have neglected this compositional coupling. In this work, we show that silicate vapor in a hydrogen-dominated atmosphere acts as a condensable species, decreasing in abundance with altitude. The resultant mean molecular weight gradient inhibits convection at temperatures above $\sim 4000$ K, inducing a near-surface radiative layer. This radiative layer decreases the planet's total radius compared to a planet with the same base temperature and a convective, pure H/He atmosphere. Therefore, we expect silicate vapor to have major effects on the inferred envelope mass fraction and thermal evolution of sub-Neptune planets. We demonstrate that differences in radii, and hence in inferred atmospheric masses, are largest for planets which have larger masses, equilibrium temperatures, and atmospheric mass fractions. The effects are largest for younger planets, but differences can persist on gigayear time-scales for some sub-Neptunes. For a $10 M_\oplus$ planet with $T_\mathrm{eq}=1000$ K and an age of $\sim 300$ Myr, an observed radius consistent with an atmospheric mass fraction of 10% when accounting for silicate vapor would be misinterpreted as indicating an atmospheric mass fraction of 2% if a H/He-only atmosphere were assumed. The presence of silicate vapor in the atmosphere is also expected to have important implications for the accretion and loss of primordial hydrogen atmospheres.