论文标题

一致性的奇数类数量的二次字段数具有奇数判别

Congruences for odd class numbers of quadratic fields with odd discriminant

论文作者

Kim, Jigu, Mizuno, Yoshinori

论文摘要

对于任何不同的两个普通$ p_1 \ equiv p_2 \ equiv 3 $(\ text {mod} 4)$,让$ h(-p_1)$,$ h(-p_2)$和$ h(p_1p_2)$是Quadratic Fields $ \ \ \ m nathbb {q} $ {q} $ {Q}(\ sqrt)的类别$ \ mathbb {q}(\ sqrt {-p_2})$和$ \ mathbb {q}(\ sqrt {p_1p_2})$,分别为$。令$ω_{p_1p_2}:=(1+ \ sqrt {p_1p_2})/2 $,让$ψ(ω__{p_1p_2})$为$ω___________________________________________________________{我们表明$ h(-p_1)h(-p_2)\ equiv h(p_1p_2)ψ(ω__{p_1p_2})/n $ $(\ text {mod} 8)$,其中$ n = 6 $(分别为$ n = 2 $,如果$ \ \ \ \ \ \ \ \ \ \ {p_1,p_1,p_2 $} $ n = 6 $(分别为$ n = 2 $)。我们还考虑了带有导体$ 2 $ in $ \ mathbb {q}(\ sqrt {p_1p_2})$的真实二次订单。

For any distinct two primes $p_1\equiv p_2\equiv 3$ $(\text{mod }4)$, let $h(-p_1)$, $h(-p_2)$ and $h(p_1p_2)$ be the class numbers of the quadratic fields $\mathbb{Q}(\sqrt{-p_1})$, $\mathbb{Q}(\sqrt{-p_2})$ and $\mathbb{Q}(\sqrt{p_1p_2})$, respectively. Let $ω_{p_1p_2}:=(1+\sqrt{p_1p_2})/2$ and let $Ψ(ω_{p_1p_2})$ be the Hirzebruch sum of $ω_{p_1p_2}$. We show that $h(-p_1)h(-p_2)\equiv h(p_1p_2)Ψ(ω_{p_1p_2})/n$ $(\text{mod }8)$, where $n=6$ (respectively, $n=2$) if $\min\{p_1,p_2\}>3$ (respectively, otherwise). We also consider the real quadratic order with conductor $2$ in $\mathbb{Q}(\sqrt{p_1p_2})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源