论文标题
关于$(a,b,m)$ - $ n $的共同款项的均等
On the parity of the number of $(a,b,m)$-copartitions of $n$
论文作者
论文摘要
我们继续研究$(a,b,m)$ - 共同分会函数$ \ mathrm {cp} _ {a,b,m}(n)$,它是对安德鲁斯分区的组合概括,甚至零件以下是零件以下。 $ \ mathrm {cp} _ {a,b,m}(n)$的生成函数具有不错的代表。在本文中,我们关注$ \ mathrm {cp} _ {a,b,m}(n)$的奇偶校验。与普通分区功能一样,对于任意$ a,b $和$ m $,很难显示$ \ mathrm {cp} _ {a,b,m}(a,b,m}(n)$的正密度或奇数值的正密度。但是,我们找到$ a,b,m $的具体情况,使得$ \ m atrm {cp} _ {a,b,m}(n)$甚至具有密度1。我们表明序列$ \ {\ m {\ mathrm {cp} _ {a,m-a,m-a,m-a,m-a,m}(m-a,m} $} n = 0 n = 0.经常无限。
We continue the study of the $(a,b,m)$-copartition function $\mathrm{cp}_{a,b,m}(n)$, which arose as a combinatorial generalization of Andrews' partitions with even parts below odd parts. The generating function of $\mathrm{cp}_{a,b,m}(n)$ has a nice representation as an infinite product. In this paper, we focus on the parity of $\mathrm{cp}_{a,b,m}(n)$. As with the ordinary partition function, it is difficult to show positive density of either even or odd values of $\mathrm{cp}_{a,b,m}(n)$ for arbitrary $a, b$, and $m$. However, we find specific cases of $a,b,m$ such that $\mathrm{cp}_{a,b,m}(n)$ is even with density 1. Additionally, we show that the sequence $\{\mathrm{cp}_{a,m-a,m}(n)\}_{n=0}^\infty$ takes both even and odd values infinitely often.