论文标题
使用径向碳耗尽曲线捕捉卵石漂移和捕获
Tracing pebble drift and trapping using radial carbon depletion profiles in protoplanetary disks
论文作者
论文摘要
行星的组成可能在很大程度上取决于冰球圆盘中冰卵石的化学加工和积聚。最新观察到了原星盘暗示气态碳的广泛耗竭。缺失的挥发性碳很可能在谷物上的CO和/或CO $ _2 $冰中冻结,并通过卵石捕获压力凸起或行星,将其锁定在磁盘中。我们介绍了第一个成功的ACA(Atacama紧凑型阵列)[C I] $ j $ = 1-0的七个Protoplanetary磁盘的结果。使用量身定制的方位角对称DALI(灰尘和线)的热化学磁盘模型,并由[C I] $ j $ = 1-0和已解决的CO同位素学数据支持,我们确定了三个源的外部磁盘中系统平均元件元素波动碳的丰度。在[C I] $ J $ = 1-0的ACA中检测到七个来源中的六个,其中四个显示出独特的磁盘组件。基于建模,我们发现DL Tau的外盘中严重的冷气碳耗竭,并在Tau博士和Do Tau的外磁盘中进行中度耗竭。结合了外部和内部磁盘碳的丰度,我们证明了DL Tau磁盘中径向漂移的明确证据,其中多个灰尘环的存在指向短生命或漏水的灰尘陷阱。我们发现在do tau和tau博士的紧凑而光滑的磁盘上锁定灰尘,暗示未解决的灰尘子结构。将我们的结果与不同年龄和亮度的恒星进行比较,我们确定了气态碳耗尽的观察性进化趋势,该趋势与CO消耗过程的动态模型一致。基于连续观测中当前分辨的子结构,固体中固体的运输效率可能与我们期望的差异显着不同。这对我们对径向漂移和卵石积聚对行星组成的影响的理解具有重要意义。
The composition of planets may be largely determined by the chemical processing and accretion of icy pebbles in protoplanetary disks. Recent observations of protoplanetary disks hint at wide-spread depletion of gaseous carbon. The missing volatile carbon is likely frozen in CO and/or CO$_2$ ice on grains and locked into the disk through pebble trapping in pressure bumps or planetesimals. We present the results of the first successful ACA (Atacama Compact Array) [C I] $J$ = 1-0 mini-survey of seven protoplanetary disks. Using tailored azimuthally symmetric DALI (Dust And LInes) thermo-chemical disk models, supported by the [C I] $J$ = 1-0 and resolved CO isotopologue data, we determine the system-averaged elemental volatile carbon abundance in the outer disk of three sources. Six out of seven sources are detected in [C I] $J$ = 1-0 with ACA, four of which show a distinct disk component. Based on the modeling we find severe cold gaseous carbon depletion in the outer disk of DL Tau and moderate depletion in the outer disks of DR Tau and DO Tau. Combining the outer and inner disk carbon abundances, we demonstrate definitive evidence for radial drift in the disk of DL Tau, where the existence of multiple dust rings points to either short lived or leaky dust traps. We find dust locking in the compact and smooth disks of DO Tau and DR Tau, hinting at unresolved dust substructure. Comparing our results with stars of different ages and luminosities, we identify an observational evolutionary trend in gaseous carbon depletion that is consistent with dynamical models of CO depletion processes. Transport efficiency of solids in protoplanetary disks can significantly differ from what we expect based on the current resolved substructure in the continuum observations. This has important implications for our understanding of the impact of radial drift and pebble accretion on planetary compositions.