论文标题

产生由可融合和可超过群体分级的戒指数量

Generating numbers of rings graded by amenable and supramenable groups

论文作者

Lorensen, Karl, Öinert, Johan

论文摘要

一个环$ r $具有{\ it无界的生成号}(ugn),如果对于每个正整数$ n $,则没有$ r $ -module Emimorlism $ r^n \ to r^{n+1} $。对于环$ r = \ bigoplus_ {g \ in g} r_g $由组$ g $分级的r_g $,以使基本环$ r_1 $具有UGN,我们确定了$ r $也必须具有ugn的几套条件。其中最重要的是:(1)$ g $是可正常的,并且有一个正整数$ r $,这样,对于g $中的每一个$ g \,$ r_g \ cong(r_1)^i $ as as $ r_1 $ -mmodules,用于某些$ i = 1,\ dots,r $; (2)$ g $是可超过的,并且有一个正整数$ r $,这样,对于g $中的每$ g \,$ r_g \ cong(r_1)^i $ as $ r_1 $ - modules for Some $ i = 0,\ dots,r $。两对条件(1)导致三种不同的环理论特征对组的合理性。 我们还认为没有UGN的戒指;对于这样的环$ r $,是最小的正整数$ n $,因此有一个$ r $ - 模块的表达$ r^n \ to r^{n+1} $称为$ r $的{\ it生成号},表示为$ {\ rm gn}(r)$。如果$ r $具有ugn,则我们定义$ {\ rm gn}(r):= \ aleph_0 $。我们描述了一个由不友善组$ g $分级的环$ r $的几类示例,以便$ {\ rm gn}(r)\ neq {\ rm gn}(r_1)$。

A ring $R$ has {\it unbounded generating number} (UGN) if, for every positive integer $n$, there is no $R$-module epimorphism $R^n\to R^{n+1}$. For a ring $R=\bigoplus_{g\in G} R_g$ graded by a group $G$ such that the base ring $R_1$ has UGN, we identify several sets of conditions under which $R$ must also have UGN. The most important of these are: (1) $G$ is amenable, and there is a positive integer $r$ such that, for every $g\in G$, $R_g\cong (R_1)^i$ as $R_1$-modules for some $i=1,\dots,r$; (2) $G$ is supramenable, and there is a positive integer $r$ such that, for every $g\in G$, $R_g\cong (R_1)^i$ as $R_1$-modules for some $i=0,\dots,r$. The pair of conditions (1) leads to three different ring-theoretic characterizations of the property of amenability for groups. We also consider rings that do not have UGN; for such a ring $R$, the smallest positive integer $n$ such that there is an $R$-module epimorphism $R^n\to R^{n+1}$ is called the {\it generating number} of $R$, denoted ${\rm gn}(R)$. If $R$ has UGN, then we define ${\rm gn}(R):=\aleph_0$. We describe several classes of examples of a ring $R$ graded by an amenable group $G$ such that ${\rm gn}(R)\neq {\rm gn}(R_1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源