论文标题

基于相似性的灰色框对抗攻击对深面识别

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

论文作者

Wang, Hanrui, Wang, Shuo, Jin, Zhe, Wang, Yandan, Chen, Cunjian, Tistarell, Massimo

论文摘要

当揭示系统的全部知识时,大多数对抗攻击技术(\ emph {white-box})表现出色。但是,此类技术在灰色框设置中没有成功,在灰色框设置中,攻击者未知面部模板。在这项工作中,我们提出了具有新开发的目标函数的基于相似性的灰色对手攻击(SGADV)技术。 SGADV利用差异得分来产生优化的对抗示例,即基于相似性的对抗攻击。该技术适用于针对身份验证系统的白色框和灰色框攻击,这些身份验证系统使用差异分数确定了真正的或冒名顶替的用户。为了验证SGADV的有效性,我们在LFW,Celeba和Celeba-HQ的面部数据集上进行了广泛的实验,以防止白色盒和灰色盒子设置中的FaceNet和Insightface的深面识别模型。结果表明,所提出的方法在灰色框设置中显着优于现有的对抗攻击技术。因此,我们总结说,开发对抗性示例的相似性碱方法可以令人满意地迎合灰色盒子的攻击方案以进行去实施。

The majority of adversarial attack techniques perform well against deep face recognition when the full knowledge of the system is revealed (\emph{white-box}). However, such techniques act unsuccessfully in the gray-box setting where the face templates are unknown to the attackers. In this work, we propose a similarity-based gray-box adversarial attack (SGADV) technique with a newly developed objective function. SGADV utilizes the dissimilarity score to produce the optimized adversarial example, i.e., similarity-based adversarial attack. This technique applies to both white-box and gray-box attacks against authentication systems that determine genuine or imposter users using the dissimilarity score. To validate the effectiveness of SGADV, we conduct extensive experiments on face datasets of LFW, CelebA, and CelebA-HQ against deep face recognition models of FaceNet and InsightFace in both white-box and gray-box settings. The results suggest that the proposed method significantly outperforms the existing adversarial attack techniques in the gray-box setting. We hence summarize that the similarity-base approaches to develop the adversarial example could satisfactorily cater to the gray-box attack scenarios for de-authentication.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源