论文标题
同时实施DD-αAMG中扭曲的质量费米子的多变型dirac矩阵
Implementation of Simultaneous Inversion of a Multi-shifted Dirac Matrix for Twisted-Mass Fermions within DD-αAMG
论文作者
论文摘要
在物理夸克质量下,有效的线性求解器对于在夸克相关函数中获得高统计所需的数百万次反转至关重要。在这种情况下,自适应代数多网格方法已被证明非常有效,在物理点表现出轻度的关键降低对非常轻夸克的质量,并超过传统的求解器方法,例如结合梯度方法。我们将讨论我们的(脱名式)dirac矩阵的同时倒置,以用于多个右侧(RHS)的扭曲质量费米子,并具有多速度和Block-Krylov求解器。该实现是在社区库DD $α$ AMG中进行的,该库实现了基于聚合的域分解自适应代数多网格方法。通过快速准确的块线性krylov求解器(神话般的)库提供了块krylov求解器,可在更粗的级别上使用。我们的代码将具有不同扭曲的质量项和多个RHS的Dirac矩阵倒置,因此也适用于典型晶格QCD仿真工作流中的组件,例如有理近似。我们显示了有关可伸缩性的初步结果,并比较了使用不同块 - 克里洛夫求解器技术时实现的性能。
At physical light quark masses, efficient linear solvers are crucial for carrying out the millions of inversions of the Dirac matrix required for obtaining high statistics in quark correlation functions. Adaptive algebraic multi-grid methods have proven to be very efficient in such cases, exhibiting mild critical slowing down towards very light quark masses and outperforming traditional solver methods, such as the conjugate gradient method, at the physical point. We will discuss our implementations of simultaneous inversion of a (degenerate) Dirac matrix for twisted-mass fermions for multiple right-hand-sides (rhs) with multi-shifts and block-Krylov solvers. The implementation is carried out within the community library DD$α$AMG, which implements aggregation-based Domain Decomposition adaptive algebraic multi-grid methods. The block-Krylov solvers are provided via the Fast Accurate Block Linear krylOv Solver (Fabulous) library and can be used at coarser levels. Our code inverts Dirac matrices with different twisted-mass terms and for multiple rhs simultaneously and is thus also suitable for components within a typical lattice QCD simulation workflow, such as the rational approximation. We show preliminary results on scalability and compare the performance of our implementation when using different Block-Krylov solver techniques.