论文标题
RFLBAT:一种针对后门攻击的强大联邦学习算法
RFLBAT: A Robust Federated Learning Algorithm against Backdoor Attack
论文作者
论文摘要
联合学习(FL)是一个分布式的机器学习范式,其中大量分散的客户(例如移动设备或IoT设备)在中央服务器(例如服务提供商)的编排下协作培训模型,同时保持培训数据分散。不幸的是,FL容易受到各种攻击的影响,包括后门攻击,在恶意攻击者面前,这种攻击变得更糟。大多数算法通常都认为,铲球的恶意是良性客户端或数据分布相同的分布(IID)。但是,没有人知道恶意攻击者的数量,并且数据分布通常是非相同的分布(非IID)。在本文中,我们提出了使用主成分分析(PCA)技术的RFLBAT,而Kmeans聚集算法来防御后门攻击。我们的算法RFLBAT不限制后门攻击者的数量和数据分布,并且在学习过程之外不需要辅助信息。我们进行了广泛的实验,包括各种后门攻击类型。实验结果表明,RFLBAT的表现优于现有的最新算法,并且能够抵抗包括不同数量的攻击者(DNA),不同的非IID场景(DNS),不同数量的客户端(DNC)(DNC)(DNC)和分布式后门攻击(DBA),能够抵抗各种后门攻击方案。
Federated learning (FL) is a distributed machine learning paradigm where enormous scattered clients (e.g. mobile devices or IoT devices) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. Unfortunately, FL is susceptible to a variety of attacks, including backdoor attack, which is made substantially worse in the presence of malicious attackers. Most of algorithms usually assume that the malicious at tackers no more than benign clients or the data distribution is independent identically distribution (IID). However, no one knows the number of malicious attackers and the data distribution is usually non identically distribution (Non-IID). In this paper, we propose RFLBAT which utilizes principal component analysis (PCA) technique and Kmeans clustering algorithm to defend against backdoor attack. Our algorithm RFLBAT does not bound the number of backdoored attackers and the data distribution, and requires no auxiliary information outside of the learning process. We conduct extensive experiments including a variety of backdoor attack types. Experimental results demonstrate that RFLBAT outperforms the existing state-of-the-art algorithms and is able to resist various backdoor attack scenarios including different number of attackers (DNA), different Non-IID scenarios (DNS), different number of clients (DNC) and distributed backdoor attack (DBA).