论文标题

$ p $ - 波配对的Aubry-André-Harper模型中的量子批判性和普遍性

Quantum criticality and universality in the $p$-wave paired Aubry-André-Harper model

论文作者

Lv, Ting, Yi, Tian-Cheng, Li, Liangsheng, Sun, Gaoyong, You, Wen-Long

论文摘要

我们研究了Aubry-André-Harper(AAH)模型的量子关键性和普遍性,该模型具有$ p $ - 波超导配对$δ$的$δ$,就普遍的保真度易感性(GFS)而言。我们表明,高阶GFS比低阶GFS更有效率,因此增强的灵敏度对于从准膜系统中的有限尺寸缩放缩放中提取相关的通用信息是有意义的。 GFS遵守定位过渡的幂律缩放,​​因此GFS的缩放特性提供了引人注目的关键指数值。具体而言,我们证明了固定调制阶段$ ϕ =π$减轻了以$δ= 0 $的质量缩放函数的奇数效果,而缩放功能的尺寸和有限$δ$的系统尺寸的功能都无法重合$ $ $ ϕ $。具有奇数系统尺寸的详尽数值分析揭示了相关长度指数$ν\ simeq 1.000 $和动态指数$ z $ $ \ simeq $ 1.388,用于从关键阶段到本地化阶段的过渡,这表明与aah $ p $ p $ p $ -poduct a a a ah模型中的本地化类别相比 - Aubry-André过渡。结果可以在近期最新的实验环境中作证。

We investigate the quantum criticality and universality in Aubry-André-Harper (AAH) model with $p$-wave superconducting pairing $Δ$ in terms of the generalized fidelity susceptibility (GFS). We show that the higher-order GFS is more efficient in spotlighting the critical points than lower-order ones, and thus the enhanced sensitivity is propitious for extracting the associated universal information from the finite-size scaling in quasiperiodic systems. The GFS obeys power-law scaling for localization transitions and thus scaling properties of the GFS provide compelling values of critical exponents. Specifically, we demonstrate that the fixed modulation phase $ϕ=π$ alleviates the odd-even effect of scaling functions across the Aubry-André transition with $Δ=0$, while the scaling functions for odd and even numbers of system sizes with a finite $Δ$ cannot coincide irrespective of the value of $ϕ$. A thorough numerical analysis with odd number of system sizes reveals the correlation-length exponent $ν\simeq 1.000$ and the dynamical exponent $z$ $\simeq$ 1.388 for transitions from the critical phase to the localized phase,suggesting the unusual universality class of localization transitions in the AAH model with a finite $p$-wave superconducting pairing lies in a different universality class from the Aubry-André transition. The results may be testified in near term state-of-the-art experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源