论文标题
非均匀dirichlet问题的全球规律性应用于非区别的域上的热核和耐寒空间
Heat Kernels and Hardy Spaces on Non-Tangentially Accessible Domains with Applications to Global Regularity of Inhomogeneous Dirichlet Problems
论文作者
论文摘要
令$ n \ ge2 $和$ω$为$ \ mathbb {r}^n $的一个有限的非区域性访问域(简称NTA域)。假设$ l_d $是具有dirichlet边界条件的$ l^2(ω)$上的实价,有界,可测量系数的椭圆形操作员。本文的主要目的是三倍。首先,作者证明了加热内核$ \ {k_t^{l_d} \} _ {t> 0} $由$ l_d $生成的$是Hölder的连续。其次,对于(0,1] $中的任何$ p \,作者通过限制hardy space $ h^p(\ mathbb {r}^n)$的任何元素来介绍“几何”'hardy space $ h^p_r(ω)$ $ h^p_r(ω)= h^p(ω)= h^p_ {l_d}(ω)$带有等价的准核电,其中$ h^p(ω)$和$ h^p_ {l_d}(l_d}(ω)$分别表示与$ω$的硬质量和$ l_d $ $ l_d $ f.内核的Hölder连续性$ \ {k_t^{l_d} \} _ {t> 0} $。 $ p \ in(\ frac {n} {n+1},1] $,对于不均匀的dirichlet问题,二阶差异的dirichlet问题形成有限的nta域上的椭圆方程,其中$ p_0 \ in(2,\ infty)$仅在$ n $,$ n $,$ c的$ c上,$ l _ coffix coftrix of cofectrix $ l _ cofectrix cofecix cofecix y。全球梯度估算的范围$ p \ in(1,p_0)$在lebesgue Spaces $ l^p(ω)$的规模上是锐利的,并且在没有任何其他假设上建立了上述结果,这两个系数矩阵的$ l_d $均为$ l_d $,and the域$ω$。
Let $n\ge2$ and $Ω$ be a bounded non-tangentially accessible domain (for short, NTA domain) of $\mathbb{R}^n$. Assume that $L_D$ is a second-order divergence form elliptic operator having real-valued, bounded, measurable coefficients on $L^2(Ω)$ with the Dirichlet boundary condition. The main aim of this article is threefold. First, the authors prove that the heat kernels $\{K_t^{L_D}\}_{t>0}$ generated by $L_D$ are Hölder continuous. Second, for any $p\in(0,1]$, the authors introduce the `geometrical' Hardy space $H^p_r(Ω)$ by restricting any element of the Hardy space $H^p(\mathbb{R}^n)$ to $Ω$, and show that, when $p\in(\frac{n}{n+δ_0},1]$, $H^p_r(Ω)=H^p(Ω)=H^p_{L_D}(Ω)$ with equivalent quasi-norms, where $H^p(Ω)$ and $H^p_{L_D}(Ω)$ respectively denote the Hardy space on $Ω$ and the Hardy space associated with $L_D$, and $δ_0\in(0,1]$ is the critical index of the Hölder continuity for the kernels $\{K_t^{L_D}\}_{t>0}$. Third, as applications, the authors obtain the global gradient estimates in both $L^p(Ω)$, with $p\in(1,p_0)$, and $H^p_z(Ω)$, with $p\in(\frac{n}{n+1},1]$, for the inhomogeneous Dirichlet problem of second-order divergence form elliptic equations on bounded NTA domains, where $p_0\in(2,\infty)$ is a constant depending only on $n$, $Ω$, and the coefficient matrix of $L_D$. It is worth pointing out that the range $p\in(1,p_0)$ for the global gradient estimate in the scale of Lebesgue spaces $L^p(Ω)$ is sharp and the above results are established without any additional assumptions on both the coefficient matrix of $L_D$, and the domain $Ω$.