论文标题
在存在部分组标签的情况下迈向组鲁棒性
Towards Group Robustness in the presence of Partial Group Labels
论文作者
论文摘要
当训练由数据集中的虚假相关性驱动的机器学习模型时,学习不变表示是一个重要的要求。这些虚假的相关性,输入样本和目标标签之间,错误地指导了神经网络预测,导致某些群体(尤其是少数群体)的表现不佳。针对这些虚假相关性的强大培训需要每个样本的小组成员资格知识。在情况下,这种要求是不切实际的,在这种情况下,少数群体或稀有群体的数据标记工作非常费力,或者组成数据集的个人选择隐藏敏感信息。另一方面,此类数据收集工作的存在导致包含部分标记为组信息的数据集。最近的作品已经解决了完全无监督的方案,在该场景中没有可用的组标签。因此,我们旨在通过解决更现实的环境来填补文献中缺少的空白,该环境可以利用培训期间利用部分可用的敏感或小组信息。首先,我们构建一个约束集,并得出一个属于集合的较高的概率绑定。其次,我们提出了一种算法,该算法可针对约束集的最坏情况组进行优化。通过图像和表格数据集的实验,我们显示了少数群体绩效的改进,同时保留了整个组的总体汇总精度。
Learning invariant representations is an important requirement when training machine learning models that are driven by spurious correlations in the datasets. These spurious correlations, between input samples and the target labels, wrongly direct the neural network predictions resulting in poor performance on certain groups, especially the minority groups. Robust training against these spurious correlations requires the knowledge of group membership for every sample. Such a requirement is impractical in situations where the data labeling efforts for minority or rare groups are significantly laborious or where the individuals comprising the dataset choose to conceal sensitive information. On the other hand, the presence of such data collection efforts results in datasets that contain partially labeled group information. Recent works have tackled the fully unsupervised scenario where no labels for groups are available. Thus, we aim to fill the missing gap in the literature by tackling a more realistic setting that can leverage partially available sensitive or group information during training. First, we construct a constraint set and derive a high probability bound for the group assignment to belong to the set. Second, we propose an algorithm that optimizes for the worst-off group assignments from the constraint set. Through experiments on image and tabular datasets, we show improvements in the minority group's performance while preserving overall aggregate accuracy across groups.