论文标题
强大的K空间插值网络的迭代培训,以改进图像重建,并使用有限的扫描特定训练样品
Iterative training of robust k-space interpolation networks for improved image reconstruction with limited scan specific training samples
论文作者
论文摘要
目的:评估一种迭代学习方法,以提高稳健的人工神经网络进行K空间插值(RAKI)的性能,而只有有限量的训练数据(自动校准信号,ACS)可用于加速标准的2D标准2D成像。方法:在第一步中,针对训练数据量的强度有限的情况,对Raki模型进行了优化。在迭代学习方法(称为迭代的Raki)中,最初使用从线性平行成像重建获得的原始和增强AC进行了优化的Raki模型。随后,使用从先前的Raki重建中提取的原始AC和增强的AC对Raki卷积过滤器进行完善。对来自FASTMRI Neuro数据库的200个回顾性不足的体内数据集进行了评估,并具有不同的对比度设置。结果:对于有限的训练数据(分别为r = 4和r = 5的18和22 ACS线),与标准平行成像相比,迭代raki优于标准raki,通过减少残留伪像并产生强烈的噪声抑制,与标准平行成像相比,被定量重建质量质量指标强调。结合相位约束,可以实现进一步的重建改进。此外,在扫描前校准的情况下,迭代性Raki的性能比Grappa和Raki都更好,并且训练和不足的数据之间的对比度有所不同。结论:具有Raki的迭代学习方法从标准Rakis众所周知的抑制功能中受益,但需要更少的原始训练数据来准确重建标准2D图像,从而改善净加速度。
Purpose: To evaluate an iterative learning approach for enhanced performance of Robust Artificial-neural-networks for K-space Interpolation (RAKI), when only a limited amount of training data (auto-calibration signals, ACS) are available for accelerated standard 2D imaging. Methods: In a first step, the RAKI model was optimized for the case of strongly limited training data amount. In the iterative learning approach (termed iterative RAKI), the optimized RAKI model is initially trained using original and augmented ACS obtained from a linear parallel imaging reconstruction. Subsequently, the RAKI convolution filters are refined iteratively using original and augmented ACS extracted from the previous RAKI reconstruction. Evaluation was carried out on 200 retrospectively undersampled in-vivo datasets from the fastMRI neuro database with different contrast settings. Results: For limited training data (18 and 22 ACS lines for R=4 and R=5, respectively), iterative RAKI outperforms standard RAKI by reducing residual artefacts and yields strong noise suppression when compared to standard parallel imaging, underlined by quantitative reconstruction quality metrics. In combination with a phase constraint, further reconstruction improvements can be achieved. Additionally, iterative RAKI shows better performance than both GRAPPA and RAKI in case of pre-scan calibration with varying contrast between training- and undersampled data. Conclusion: The iterative learning approach with RAKI benefits from standard RAKIs well known noise suppression feature but requires less original training data for the accurate reconstruction of standard 2D images thereby improving net acceleration.