论文标题
一种多尺度抽样方法,用于准确稳健的深神经网络,以预测燃烧化学动力学
A multi-scale sampling method for accurate and robust deep neural network to predict combustion chemical kinetics
论文作者
论文摘要
长期以来,由于参数数量极高,缺乏评估标准和可重复性,机器学习长期以来被认为是预测燃烧化学动力学的黑匣子。当前的工作旨在了解有关深神经网络(DNN)方法的两个基本问题:DNN所需的数据以及DNN方法的通用程度。采样和预处理确定DNN训练数据集,进一步影响DNN预测能力。当前的工作建议使用Box-Cox变换(BCT)来预处理数据。此外,这项工作还比较了有或没有预处理的不同采样方法,包括蒙特卡洛方法,歧管采样,生成神经网络方法(Cycle-GAN)和新提出的多尺度采样。我们的结果表明,受歧管数据训练的DNN可以以有限的配置捕获化学动力学,但不能保持扰动的稳健性,这对于DNN与流场相结合是不可避免的。蒙特卡洛和自行车采样可以覆盖更广泛的相空间,但无法捕获小规模的中间物种,从而产生较差的预测结果。基于没有特定火焰模拟数据的多尺度方法的三层DNN允许在各种情况下预测化学动力学,并在时间演变期间保持稳定。该单个DNN很容易使用多个CFD代码实现,并在包括(1)在内的各种燃烧器中进行了验证。零维自动签名,(2)。一维自由传播火焰,(3)。带有三个闪光结构的二维喷射火焰和(4)。三维湍流升起火焰。结果表明,预训练的DNN的精度和概括能力令人满意。 DNN的Fortran和Python版本以及示例代码附加在补充中,以获得可重复性。
Machine learning has long been considered as a black box for predicting combustion chemical kinetics due to the extremely large number of parameters and the lack of evaluation standards and reproducibility. The current work aims to understand two basic questions regarding the deep neural network (DNN) method: what data the DNN needs and how general the DNN method can be. Sampling and preprocessing determine the DNN training dataset, further affect DNN prediction ability. The current work proposes using Box-Cox transformation (BCT) to preprocess the combustion data. In addition, this work compares different sampling methods with or without preprocessing, including the Monte Carlo method, manifold sampling, generative neural network method (cycle-GAN), and newly-proposed multi-scale sampling. Our results reveal that the DNN trained by the manifold data can capture the chemical kinetics in limited configurations but cannot remain robust toward perturbation, which is inevitable for the DNN coupled with the flow field. The Monte Carlo and cycle-GAN samplings can cover a wider phase space but fail to capture small-scale intermediate species, producing poor prediction results. A three-hidden-layer DNN, based on the multi-scale method without specific flame simulation data, allows predicting chemical kinetics in various scenarios and being stable during the temporal evolutions. This single DNN is readily implemented with several CFD codes and validated in various combustors, including (1). zero-dimensional autoignition, (2). one-dimensional freely propagating flame, (3). two-dimensional jet flame with triple-flame structure, and (4). three-dimensional turbulent lifted flames. The results demonstrate the satisfying accuracy and generalization ability of the pre-trained DNN. The Fortran and Python versions of DNN and example code are attached in the supplementary for reproducibility.