论文标题
使用锥注射构建光谱
Constructing spectra using cone injectivity
论文作者
论文摘要
我们提供了通勤环的构造作为本地环空间的构建,适用于一般环境中的锥注射类别,尤其是在本地有限的类别中。频谱函子在其一般性中没有完全忠实,我们研究了它的合理条件。此外,假设有充分的忠诚,我们介绍了代数几何形状(点的函数)对另一个概念的概括,并证明了两个方案的概念的等效性。
We provide a generalization of the construction of a spectrum of a commutative ring as a locally ringed space, applicable to cone injectivity classes in general contexts, especially in locally finitely presentable categories. In its full generality, the spectrum functor fails to be fully faithful and we study reasonable sufficient conditions under which it is. Further, assuming the full faithfulness, we introduce a generalization of another concept from algebraic geometry -- the functor of points -- and prove equivalence of the two resulting notions of schemes.