论文标题

利用基于用户活动中心的社会影响

Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

论文作者

Seyedhoseinzadeh, Kosar, Rahmani, Hossein A., Afsharchi, Mohsen, Aliannejadi, Mohammad

论文摘要

推荐系统(RSS)旨在在与项目(例如兴趣点(POI))互动时建模和预测用户偏好。这些系统面临着几个挑战,例如数据稀疏性,限制了它们的有效性。在本文中,我们通过将社会,地理和时间信息纳入矩阵分解(MF)技术来解决此问题。为此,我们基于两个因素来对社会影响进行建模:用户之间的相似之处在常见的签到及其之间的友谊方面。我们基于明确的友谊网络和用户之间的高登机式重叠介绍了两个级别的友谊。我们将友谊算法基于用户的地理活动中心。结果表明,我们所提出的模型在两个现实世界数据集上的最新模型优于最先进的模型。更具体地说,我们的消融研究表明,社会模型将我们提出的POI推荐系统的性能提高了31%和14%的Gowalla和Yelp数据集,分别以precision@10来提高。

Recommender Systems (RSs) aim to model and predict the user preference while interacting with items, such as Points of Interest (POIs). These systems face several challenges, such as data sparsity, limiting their effectiveness. In this paper, we address this problem by incorporating social, geographical, and temporal information into the Matrix Factorization (MF) technique. To this end, we model social influence based on two factors: similarities between users in terms of common check-ins and the friendships between them. We introduce two levels of friendship based on explicit friendship networks and high check-in overlap between users. We base our friendship algorithm on users' geographical activity centers. The results show that our proposed model outperforms the state-of-the-art on two real-world datasets. More specifically, our ablation study shows that the social model improves the performance of our proposed POI recommendation system by 31% and 14% on the Gowalla and Yelp datasets in terms of Precision@10, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源