论文标题

多体希尔伯特空间在超导处理器上疤痕

Many-body Hilbert space scarring on a superconducting processor

论文作者

Zhang, Pengfei, Dong, Hang, Gao, Yu, Zhao, Liangtian, Hao, Jie, Guo, Qiujiang, Chen, Jiachen, Deng, Jinfeng, Liu, Bobo, Ren, Wenhui, Yao, Yunyan, Zhang, Xu, Xu, Shibo, Wang, Ke, Jin, Feitong, Zhu, Xuhao, Li, Hekang, Song, Chao, Wang, Zhen, Liu, Fangli, Papić, Zlatko, Ying, Lei, Wang, H., Lai, Ying-Cheng

论文摘要

量子多体疤痕(QMBS) - 最近发现的弱相互作用量子系统破裂的一种形式 - 为减轻量子信息过程中的热化诱导的脱糖提供了机会。但是,QMB的现有实验实现是基于动力学约束的系统,在该系统中,新兴的动态对称性“盾牌”从频谱的热量中造成了这些状态。在这里,我们通过在计算基础上大约将一部分Hilbert空间解耦,从而在实验上实现了一种独特的QMB现象。利用具有30个QUAT和可调耦合的可编程超导处理器,我们意识到在不同几何形状的非约束模型中,希尔伯特空间疤痕,包括线性链以及准二维梳几何形状。通过在4 Quit子系统上进行全量子状态层析成像,我们通过在初始产品状态淬火后测量量子种群动态,量子保真度和纠缠熵来为QMBS状态提供有力的证据。我们的实验发现扩大了QMB机制的领域,并为利用QMBS状态中的相关性铺平了量子信息技术的应用。

Quantum many-body scarring (QMBS) -- a recently discovered form of weak ergodicity breaking in strongly-interacting quantum systems -- presents opportunities for mitigating thermalization-induced decoherence in quantum information processsing. However, the existing experimental realizations of QMBS are based on kinetically-constrained systems where an emergent dynamical symmetry "shields" such states from the thermalizing bulk of the spectrum. Here, we experimentally realize a distinct kind of QMBS phenomena by approximately decoupling a part of the many-body Hilbert space in the computational basis. Utilizing a programmable superconducting processor with 30 qubits and tunable couplings, we realize Hilbert space scarring in a non-constrained model in different geometries, including a linear chain as well as a quasi-one-dimensional comb geometry. By performing full quantum state tomography on 4-qubit subsystems, we provide strong evidence for QMBS states by measuring qubit population dynamics, quantum fidelity and entanglement entropy following a quench from initial product states. Our experimental findings broaden the realm of QMBS mechanisms and pave the way to exploiting correlations in QMBS states for applications in quantum information technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源