论文标题
关于K-Path顶点覆盖问题的调查
A Survey on the k-Path Vertex Cover Problem
论文作者
论文摘要
给定图形$ g =(v,e)$和一个正整数$ k \ ge2 $,a $ k $ - path顶点盖是顶点$ f $的子集,因此,$ g $ in $ g $的$ k $ vertices上的每条路径至少包含一个来自$ f $的顶点。 $ g $中的最低$ k $ - path顶点盖是带有最低基数的$ k $ - path顶点盖,其基数称为$ g $的{\ it $ k $ -path vertex封面}。在{\ it $ k $ -path顶点覆盖问题}中,需要在给定图中找到最小$ k $ -path顶点盖。在本文中,我们在研究$ k $ - path顶点封面问题和$ k $ - path顶点封面编号的研究中简要介绍了当前最新情况。
Given a graph $G=(V,E)$ and a positive integer $k\ge2$, a $k$-path vertex cover is a subset of vertices $F$ such that every path on $k$ vertices in $G$ contains at least one vertex from $F$. A minimum $k$-path vertex cover in $G$ is a $k$-path vertex cover with minimum cardinality and its cardinality is called the {\it $k$-path vertex cover number} of $G$. In the {\it $k$-path vertex cover problem}, it is required to find a minimum $k$-path vertex cover in a given graph. In this paper, we present a brief survey of the current state of the art in the study of the $k$-path vertex cover problem and the $k$-path vertex cover number.