论文标题

在时间依赖的空间和应用中吸引子的连续性

Continuity of the attractors in time-dependent spaces and applications

论文作者

Li, Yanan, Yang, Zhijian

论文摘要

在本文中,我们研究了吸引子在时间依赖的相位空间中的连续性。 (i)我们建立了两个关于上半年性的抽象标准,以及在扰动方面的回调$ \ mathscr d $ - 吸引者的剩余连续性,以及其连续性和其连续性与回拔等式的等价标准,这是在[27,28]中开发的吸引者的连续性理论,以在[27,28]中开发到时间依赖于时间依赖于时空的空间。 (ii)我们提出了回调$ \ mathscr d $ - 表达吸引子的概念,其中包括与时间相关的指数吸引子[33]作为其空间案例的概念,并确定其存在,并通过Quasi-stybilition通过准稳定性方法最初由Chueshov和Lasiecka介绍。 (iii)我们将上述标准应用于半连接阻尼的波动方程,并具有扰动的时间相关的传播速度:$ \eρ(t)u_ {tt}+αu_t}+αU_T-ΔU+f(u)= g $,带有触发参数$ \ e \ in(0)$ in(in(0)$ in(in)$ \ in(上面) $ \ MATHSCR D $ - 指数吸引者在时间依赖的相位空间中,此处开发的方法可以克服模型的双曲线的难度,并扩大了文献中时间相关空间中吸引者的最新理论[15,20,19]。

In this paper, we investigate the continuity of the attractors in time-dependent phase spaces. (i) We establish two abstract criteria on the upper semicontinuity and the residual continuity of the pullback $\mathscr D$-attractor with respect to the perturbations, and an equivalence criterion between their continuity and the pullback equi-attraction, which generalize the continuity theory of attractors developed recently in [27,28] to that in time-dependent spaces. (ii) We propose the notion of pullback $\mathscr D$-exponential attractor, which includes the notion of time-dependent exponential attractor [33] as its spacial case, and establish its existence and Hölder continuity criterion via quasi-stability method introduced originally by Chueshov and Lasiecka [12,13]. (iii) We apply above-mentioned criteria to the semilinear damped wave equations with perturbed time-dependent speed of propagation: $\eρ(t) u_{tt}+αu_t -Δu+f(u)=g$, with perturbation parameter $\e\in(0, 1]$, to realize above mentioned continuity of pullback $\mathscr D$ and $\mathscr D$-exponential attractors in time-dependent phase spaces, and the method developed here allows to overcome the difficulty of the hyperbolicity of the model. These results deepen and extend recent theory of attractors in time-dependent spaces in literatures [15,20,19].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源