论文标题
通过跨图像解开,增强现实世界中的低光图像
Enhancing Low-Light Images in Real World via Cross-Image Disentanglement
论文作者
论文摘要
在低光条件下捕获的图像遭受了低的可见性和各种成像伪像,例如真实噪声。现有的监督启发算法需要大量与像素对齐的训练图对,这在实践中很难准备。尽管弱监督或无监督的方法可以减轻此类挑战,而无需使用配对的训练图像,但由于缺乏相应的监督,一些现实世界中的文物不可避免地会被错误地放大。在本文中,我们没有使用完美的图像进行培训,而是创造性地利用未对齐的现实世界图像作为指导,这些图像更容易收集。具体而言,我们提出了一个跨图像分解网络(CIDN),以从低/正常光图像中分别提取跨图像亮度和特定图像的内容特征。基于此,CIDN可以同时纠正特征域中的亮度并抑制图像伪像,从而在很大程度上增加了对像素移位的鲁棒性。此外,我们收集了一个新的低光图像增强数据集,该数据集由现实世界中损坏的未对准培训图像组成。实验结果表明,我们的模型可以在新提出的数据集和其他流行的低光数据集上实现最新的性能。
Images captured in the low-light condition suffer from low visibility and various imaging artifacts, e.g., real noise. Existing supervised enlightening algorithms require a large set of pixel-aligned training image pairs, which are hard to prepare in practice. Though weakly-supervised or unsupervised methods can alleviate such challenges without using paired training images, some real-world artifacts inevitably get falsely amplified because of the lack of corresponded supervision. In this paper, instead of using perfectly aligned images for training, we creatively employ the misaligned real-world images as the guidance, which are considerably easier to collect. Specifically, we propose a Cross-Image Disentanglement Network (CIDN) to separately extract cross-image brightness and image-specific content features from low/normal-light images. Based on that, CIDN can simultaneously correct the brightness and suppress image artifacts in the feature domain, which largely increases the robustness to the pixel shifts. Furthermore, we collect a new low-light image enhancement dataset consisting of misaligned training images with real-world corruptions. Experimental results show that our model achieves state-of-the-art performances on both the newly proposed dataset and other popular low-light datasets.