论文标题
反例解释的系统文献综述
A systematic literature review on counterexample explanation
论文作者
论文摘要
上下文:安全对于汽车,机器人技术和航空电子设备等领域中的网络物理系统至关重要。诸如模型检查之类的形式方法是确保网络物理系统安全性的一种方法。但是,可用性问题阻碍了行业中正式方法的采用,尤其是理解模型检查结果的困难。目的:我们希望通过调查该领域的研究方法的环境,技术和评估来提供反例解释的艺术状态。该概述应提供对当前和指导未来研究的理解。方法:为了提供此概述,我们进行了系统的文献综述。该调查包括116个出版物,解决了针对模型检查的反例解释。结果:大多数主要研究以图形方式或作为痕迹提供反例解释,最小化反例以降低复杂性,在模型检查器的输入格式中的模型中定位误差,支持线性时间逻辑或计算树逻辑规格,并使用符号模型验证器家族的模型检查器。几项研究评估了他们在使用工业应用中的安全关键领域中的方法。结论:我们显然看到缺乏针对概率和实时系统的反例解释的研究,利用了对域特异性模型的解释,并评估了用户研究中的方法。最后,我们通过讨论具有不同领域和正式方法专业知识的用户的不同类型解释的适当性,表明有必要支持外行人在理解模型检查结果中增加行业中正式方法的采用。
Context: Safety is of paramount importance for cyber-physical systems in domains such as automotive, robotics, and avionics. Formal methods such as model checking are one way to ensure the safety of cyber-physical systems. However, adoption of formal methods in industry is hindered by usability issues, particularly the difficulty of understanding model checking results. Objective: We want to provide an overview of the state of the art for counterexample explanation by investigating the contexts, techniques, and evaluation of research approaches in this field. This overview shall provide an understanding of current and guide future research. Method: To provide this overview, we conducted a systematic literature review. The survey comprises 116 publications that address counterexample explanations for model checking. Results: Most primary studies provide counterexample explanations graphically or as traces, minimize counterexamples to reduce complexity, localize errors in the models expressed in the input formats of model checkers, support linear temporal logic or computation tree logic specifications, and use model checkers of the Symbolic Model Verifier family. Several studies evaluate their approaches in safety-critical domains with industrial applications. Conclusion: We notably see a lack of research on counterexample explanation that targets probabilistic and real-time systems, leverages the explanations to domain-specific models, and evaluates approaches in user studies. We conclude by discussing the adequacy of different types of explanations for users with varying domain and formal methods expertise, showing the need to support laypersons in understanding model checking results to increase adoption of formal methods in industry.