论文标题

基于连贯的科学文档的分布式文档表示学习

Coherence-Based Distributed Document Representation Learning for Scientific Documents

论文作者

Tan, Shicheng, Zhao, Shu, Zhang, Yanping

论文摘要

分布式文档表示是自然语言处理中的基本问题之一。当前分布式文档表示方法主要考虑单词或句子的上下文信息。这些方法并未考虑到整个文档的连贯性,例如,纸张标题与摘要,标题和描述或文档中相邻的物体之间的关系。连贯性显示了文档在逻辑和句法上是否有意义,尤其是在科学文档(论文或专利等)中。在本文中,我们提出了一个耦合的文本对嵌入(CTPE)模型,以了解科学文档的表示,该文档的表示,该文档与通过分割文档形成的耦合文本对保持了文档的连贯性。首先,我们将文档分为两个部分(例如标题和摘要等),它们构建了一个耦合的文本对。然后,我们采用负面抽样来构建未耦合的文本对,其两个部分来自不同的文档。最后,我们训练模型以判断文本对是耦合还是取消耦合,并使用耦合文本对的嵌入作为文档的嵌入。我们在三个数据集上执行实验,以进行一个信息检索任务和两个建议任务。实验结果验证了提出的CTPE模型的有效性。

Distributed document representation is one of the basic problems in natural language processing. Currently distributed document representation methods mainly consider the context information of words or sentences. These methods do not take into account the coherence of the document as a whole, e.g., a relation between the paper title and abstract, headline and description, or adjacent bodies in the document. The coherence shows whether a document is meaningful, both logically and syntactically, especially in scientific documents (papers or patents, etc.). In this paper, we propose a coupled text pair embedding (CTPE) model to learn the representation of scientific documents, which maintains the coherence of the document with coupled text pairs formed by segmenting the document. First, we divide the document into two parts (e.g., title and abstract, etc) which construct a coupled text pair. Then, we adopt negative sampling to construct uncoupled text pairs whose two parts are from different documents. Finally, we train the model to judge whether the text pair is coupled or uncoupled and use the obtained embedding of coupled text pairs as the embedding of documents. We perform experiments on three datasets for one information retrieval task and two recommendation tasks. The experimental results verify the effectiveness of the proposed CTPE model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源